In: Operations Management
1.at is the root mean square error (RMSE) for a "next period forecast" using 3-month moving average model for these three years of demand? Give your answer as an integer.
2.at is the root mean square error (RMSE) for a "next period forecast" using naive model for these three years of demand? Give your answer as an integer
3.What is the root mean square error (RMSE) for a "next period forecast" using cumulative model for these three years of demand? Give your answer as an integer.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CAN YOU SHOW ME HOW TO SOLVE THIS PROBLEM. I KNOW THE FORMULA BUT I DONT KNOW HOW TO ADD VALUES INTO THE FORMULA THANK YOU
Avg if previous 3 demand |
(Actual-Forecast)^2 |
Previous demand |
Average of previous all demand |
Formula for forecast AVERAGE($E$3:E4) for Cell2 forecast |
|||||
Month |
Year |
Period |
Demand |
3 month MA |
Sq of error |
Naïve Forecast |
Sq of error |
Cumulative Avg Forecast |
Sq of error |
Jan |
2015 |
1 |
501 |
||||||
Feb |
2015 |
2 |
376 |
501 |
15625 |
501 |
15625 |
||
Mar |
2015 |
3 |
1377 |
376 |
1002001 |
439 |
880782 |
||
Apr |
2015 |
4 |
1878 |
751 |
1269378 |
1377 |
251001 |
751 |
1269378 |
May |
2015 |
5 |
1127 |
1,210 |
6944 |
1878 |
564001 |
1033 |
8836 |
Jun |
2015 |
6 |
876 |
1,461 |
341835 |
1127 |
63001 |
1052 |
30906 |
Jul |
2015 |
7 |
814 |
1,294 |
230080 |
876 |
3844 |
1023 |
43472 |
Aug |
2015 |
8 |
626 |
939 |
97969 |
814 |
35344 |
993 |
134479 |
Sep |
2015 |
9 |
2128 |
772 |
1838736 |
626 |
2256004 |
947 |
1395056 |
Oct |
2015 |
10 |
1502 |
1,189 |
97760 |
2128 |
391876 |
1078 |
179682 |
Nov |
2015 |
11 |
689 |
1,419 |
532413 |
1502 |
660969 |
1121 |
186192 |
Dec |
2015 |
12 |
626 |
1,440 |
662053 |
689 |
3969 |
1081 |
207273 |
Jan |
2016 |
13 |
534 |
939 |
164025 |
626 |
8464 |
1043 |
259420 |
Feb |
2016 |
14 |
402 |
616 |
45939 |
534 |
17424 |
1004 |
362589 |
Mar |
2016 |
15 |
1454 |
521 |
871111 |
402 |
1106704 |
961 |
242908 |
Apr |
2016 |
16 |
1980 |
797 |
1400278 |
1454 |
276676 |
994 |
972196 |
May |
2016 |
17 |
1191 |
1,279 |
7685 |
1980 |
622521 |
1056 |
18326 |
Jun |
2016 |
18 |
928 |
1,542 |
376587 |
1191 |
69169 |
1064 |
18384 |
Jul |
2016 |
19 |
862 |
1,366 |
254352 |
928 |
4356 |
1056 |
37658 |
Aug |
2016 |
20 |
665 |
994 |
108022 |
862 |
38809 |
1046 |
145041 |
Sep |
2016 |
21 |
2243 |
818 |
2029675 |
665 |
2490084 |
1027 |
1479142 |
Oct |
2016 |
22 |
1586 |
1,257 |
108460 |
2243 |
431649 |
1085 |
251287 |
Nov |
2016 |
23 |
731 |
1,498 |
588289 |
1586 |
731025 |
1108 |
141752 |
Dec |
2016 |
24 |
666 |
1,520 |
729316 |
731 |
4225 |
1091 |
180736 |
Jan |
2017 |
25 |
559 |
994 |
189515 |
666 |
11449 |
1073 |
264625 |
Feb |
2017 |
26 |
422 |
652 |
52900 |
559 |
18769 |
1053 |
397959 |
Mar |
2017 |
27 |
1442 |
549 |
797449 |
422 |
1040400 |
1029 |
170919 |
Apr |
2017 |
28 |
1952 |
808 |
1309499 |
1442 |
260100 |
1044 |
824666 |
May |
2017 |
29 |
1187 |
1,272 |
7225 |
1952 |
585225 |
1076 |
12250 |
Jun |
2017 |
30 |
932 |
1,527 |
354025 |
1187 |
65025 |
1080 |
21945 |
Jul |
2017 |
31 |
868 |
1,357 |
239121 |
932 |
4096 |
1075 |
42932 |
Aug |
2017 |
32 |
677 |
996 |
101548 |
868 |
36481 |
1069 |
153285 |
Sep |
2017 |
33 |
2207 |
826 |
1908082 |
677 |
2340900 |
1056 |
1324154 |
Oct |
2017 |
34 |
1569 |
1,251 |
101336 |
2207 |
407044 |
1091 |
228339 |
Nov |
2017 |
35 |
740 |
1,484 |
554032 |
1569 |
687241 |
1105 |
133375 |
Dec |
2017 |
36 |
675 |
1,505 |
689453 |
740 |
4225 |
1095 |
176208 |
Mean of all |
MSE |
547427 |
MSE |
469457 |
MSE |
342890 |
|||
Sqrt(MSE) |
RMSE |
740 |
RMSE |
685 |
RMSE |
586 |