Question

In: Operations Management

1.at is the root mean square error (RMSE) for a "next period forecast" using 3-month moving...

1.at is the root mean square error (RMSE) for a "next period forecast" using 3-month moving average model for these three years of demand? Give your answer as an integer.

2.at is the root mean square error (RMSE) for a "next period forecast" using naive model for these three years of demand? Give your answer as an integer

3.What is the root mean square error (RMSE) for a "next period forecast" using cumulative model for these three years of demand? Give your answer as an integer.

Month Year Period Demand
Jan 2015 1 501
Feb 2015 2 376
Mar 2015 3 1377
Apr 2015 4 1878
May 2015 5 1127
Jun 2015 6 876
Jul 2015 7 814
Aug 2015 8 626
Sep 2015 9 2128
Oct 2015 10 1502
Nov 2015 11 689
Dec 2015 12 626
Jan 2016 13 534
Feb 2016 14 402
Mar 2016 15 1454
Apr 2016 16 1980
May 2016 17 1191
Jun 2016 18 928
Jul 2016 19 862
Aug 2016 20 665
Sep 2016 21 2243
Oct 2016 22 1586
Nov 2016 23 731
Dec 2016 24 666
Jan 2017 25 559
Feb 2017 26 422
Mar 2017 27 1442
Apr 2017 28 1952
May 2017 29 1187
Jun 2017 30 932
Jul 2017 31 868
Aug 2017 32 677
Sep 2017 33 2207
Oct 2017 34 1569
Nov 2017 35 740
Dec 2017 36 675

CAN YOU SHOW ME HOW TO SOLVE THIS PROBLEM. I KNOW THE FORMULA BUT I DONT KNOW HOW TO ADD VALUES INTO THE FORMULA THANK YOU

Solutions

Expert Solution

Avg if previous 3 demand

(Actual-Forecast)^2

Previous demand

Average of previous all demand

Formula for forecast AVERAGE($E$3:E4) for Cell2 forecast

Month

Year

Period

Demand

3 month MA

Sq of error

Naïve Forecast

Sq of error

Cumulative Avg Forecast

Sq of error

Jan

2015

1

501

Feb

2015

2

376

501

15625

501

15625

Mar

2015

3

1377

376

1002001

439

880782

Apr

2015

4

1878

                   751

1269378

1377

251001

751

1269378

May

2015

5

1127

              1,210

6944

1878

564001

1033

8836

Jun

2015

6

876

              1,461

341835

1127

63001

1052

30906

Jul

2015

7

814

              1,294

230080

876

3844

1023

43472

Aug

2015

8

626

                   939

97969

814

35344

993

134479

Sep

2015

9

2128

                   772

1838736

626

2256004

947

1395056

Oct

2015

10

1502

              1,189

97760

2128

391876

1078

179682

Nov

2015

11

689

              1,419

532413

1502

660969

1121

186192

Dec

2015

12

626

              1,440

662053

689

3969

1081

207273

Jan

2016

13

534

                   939

164025

626

8464

1043

259420

Feb

2016

14

402

                   616

45939

534

17424

1004

362589

Mar

2016

15

1454

                   521

871111

402

1106704

961

242908

Apr

2016

16

1980

                   797

1400278

1454

276676

994

972196

May

2016

17

1191

              1,279

7685

1980

622521

1056

18326

Jun

2016

18

928

              1,542

376587

1191

69169

1064

18384

Jul

2016

19

862

              1,366

254352

928

4356

1056

37658

Aug

2016

20

665

                   994

108022

862

38809

1046

145041

Sep

2016

21

2243

                   818

2029675

665

2490084

1027

1479142

Oct

2016

22

1586

              1,257

108460

2243

431649

1085

251287

Nov

2016

23

731

              1,498

588289

1586

731025

1108

141752

Dec

2016

24

666

              1,520

729316

731

4225

1091

180736

Jan

2017

25

559

                   994

189515

666

11449

1073

264625

Feb

2017

26

422

                   652

52900

559

18769

1053

397959

Mar

2017

27

1442

                   549

797449

422

1040400

1029

170919

Apr

2017

28

1952

                   808

1309499

1442

260100

1044

824666

May

2017

29

1187

              1,272

7225

1952

585225

1076

12250

Jun

2017

30

932

              1,527

354025

1187

65025

1080

21945

Jul

2017

31

868

              1,357

239121

932

4096

1075

42932

Aug

2017

32

677

                   996

101548

868

36481

1069

153285

Sep

2017

33

2207

                   826

1908082

677

2340900

1056

1324154

Oct

2017

34

1569

              1,251

101336

2207

407044

1091

228339

Nov

2017

35

740

              1,484

554032

1569

687241

1105

133375

Dec

2017

36

675

              1,505

689453

740

4225

1095

176208

Mean of all

MSE

547427

MSE

469457

MSE

342890

Sqrt(MSE)

RMSE

740

RMSE

685

RMSE

586


Related Solutions

Describe briefly the following method of Out of Sample forecast criterion 1... Root Mean Square error...
Describe briefly the following method of Out of Sample forecast criterion 1... Root Mean Square error 2...Mean absolute error 3...Mean absolute percentage error 4...Maximum Absolute Error 5...Maximum Absolute Percentage error. Write down their formulae and discuss briefly how you interpret them
1) Using a 5 period simple moving average, the forecast for period 13 will be:
Question 1 contains the actual values for 12 periods (listed in order, 1-12). In Excel, create forecasts for periods 6-13 using each of the following methods: 5 period simple moving average; 4 period weighted moving average (0.63, 0.26, 0.08, 0.03); exponential smoothing (alpha = 0.23 and the forecast for period 5 = 53); linear regression with the equation based on all 12 periods; and quadratic regression with the equation based on all 12 periods. Round all numerical answers to two...
a. Show the naive forecast, an exponential smoothing forecasts using α = 0.2, and a 3-month moving average forecast.
Month137244335450534630750829936103511411245a.  Show the naive forecast, an exponential smoothing forecasts using α = 0.2, and a 3-month moving average forecast.b. Compare the MFE, MSE, and MAPE on the modelsc.  Make a conclusion on which model to use.d. Find the alpha (smoothing constant) that minimizes the MSE.
Select five metrics used to assess performance (e.g. error, root mean square error (RMSE), bias, etc.)....
Select five metrics used to assess performance (e.g. error, root mean square error (RMSE), bias, etc.). Discuss advantages and disadvantages of each metric
For the attached data set, 1. create a 3-month and 6-month moving average forecast. 2. Calculate...
For the attached data set, 1. create a 3-month and 6-month moving average forecast. 2. Calculate the standard errors 3. compare their forecast accuracy Month/Year Unemployment rate Jan-17 5.1 Feb-17 4.9 Mar-17 4.6 Apr-17 4.1 May-17 4.1 Jun-17 4.5 Jul-17 4.6 Aug-17 4.5 Sep-17 4.1 Oct-17 3.9 Nov-17 3.9 Dec-17 3.9 Jan-18 4.5 Feb-18 4.4 Mar-18 4.1 Apr-18 3.7 May-18 3.6 Jun-18 4.2 Jul-18 4.1 Aug-18 3.9 Sep-18 3.6 Oct-18 3.5 Nov-18 3.5
Compute the mean square error using equation s2 = MSE =
Consider the data. xi 1 2 3 4 5 yi 4 8 6 12 14 (a) Compute the mean square error using equation  s2 = MSE = SSE n − 2  . (Round your answer to two decimal places.) (b) Compute the standard error of the estimate using equation s = MSE = SSE n − 2  . (Round your answer to three decimal places.) (c) Compute the estimated standard deviation of b1 using equation sb1 = s Σ(xi −...
(a) Compute the mean square error using equation s2 = MSE =
Consider the data. xi 1 2 3 4 5 yi 4 6 5 12 13 (a) Compute the mean square error using equation s2 = MSE = SSE n − 2  . (Round your answer to two decimal places.) (b) Compute the standard error of the estimate using equation s =MSE= SSE n − 2 =  . (Round your answer to three decimal places.) (c) Compute the estimated standard deviation of b1 using equation sb1 = s Σ(xi − x)2...
Find the MAD for the 3-month and the 12-month moving average forecast. Year   Month   Rate(%) 2009  ...
Find the MAD for the 3-month and the 12-month moving average forecast. Year   Month   Rate(%) 2009   Jan   7.9 2009   Feb   8.5 2009   Mar   8.7 2009   Apr   9.1 2009   May   9.4 2009   Jun   9.4 2009   Jul   9.7 2009   Aug   9.5 2009   Sep   9.9 2009   Oct   9.9 2009   Nov   9.9 2009   Dec   9.7 2010   Jan   9.7 2010   Feb   9.6 2010   Mar   9.8 2010   Apr   9.7 2010   May   9.5 2010   Jun   9.4 2010   Jul   9.4 2010   Aug   9.4 2010   Sep   9.4 2010   Oct  ...
The _____________ is the square root of the arithmetic average of the squared deviations from the mean. In other words, it is simply the square root of the ______________.
The _____________ is the square root of the arithmetic average of the squared deviations from the mean. In other words, it is simply the square root of the ______________.data spread; population standard deviationStandard deviation; data spreadpopulation standard deviation; variancevariance; standard deviation
Suppose that you are using the? four-period weighted moving average forecasting method to forecast sales and...
Suppose that you are using the? four-period weighted moving average forecasting method to forecast sales and you know that sales will be decreasing every period for the foreseeable future. What of the following would be the best set of weights to use? (listed in order from the most recent period to four periods? ago, respectively)? A.0.00, 0.00,? 0.00, 1.00 B.?0.25, 0.25,? 0.25, 0.25 C.?1.00, 0.00,? 0.00, 0.00 D.0.10, 0.20,? 0.30, 0.40 E. ?0.40, 0.30,? 0.20, 0.10
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT