Question

In: Statistics and Probability

For the attached data set, 1. create a 3-month and 6-month moving average forecast. 2. Calculate...

For the attached data set,

1. create a 3-month and 6-month moving average forecast.

2. Calculate the standard errors

3. compare their forecast accuracy

Month/Year Unemployment rate
Jan-17 5.1
Feb-17 4.9
Mar-17 4.6
Apr-17 4.1
May-17 4.1
Jun-17 4.5
Jul-17 4.6
Aug-17 4.5
Sep-17 4.1
Oct-17 3.9
Nov-17 3.9
Dec-17 3.9
Jan-18 4.5
Feb-18 4.4
Mar-18 4.1
Apr-18 3.7
May-18 3.6
Jun-18 4.2
Jul-18 4.1
Aug-18 3.9
Sep-18 3.6
Oct-18 3.5
Nov-18 3.5

Solutions

Expert Solution

I had done this using MINITAB as follows-

Stat- Time series -moving average . This gives output as follows-

From above standard error for 3 - month Moving Average is 0.16 and 6 - month moving average is 0.08902.

Forecast for 6 month moving average is accurate. Because it's standard error is minimum.


Related Solutions

Find the MAD for the 3-month and the 12-month moving average forecast. Year   Month   Rate(%) 2009  ...
Find the MAD for the 3-month and the 12-month moving average forecast. Year   Month   Rate(%) 2009   Jan   7.9 2009   Feb   8.5 2009   Mar   8.7 2009   Apr   9.1 2009   May   9.4 2009   Jun   9.4 2009   Jul   9.7 2009   Aug   9.5 2009   Sep   9.9 2009   Oct   9.9 2009   Nov   9.9 2009   Dec   9.7 2010   Jan   9.7 2010   Feb   9.6 2010   Mar   9.8 2010   Apr   9.7 2010   May   9.5 2010   Jun   9.4 2010   Jul   9.4 2010   Aug   9.4 2010   Sep   9.4 2010   Oct  ...
a. Show the naive forecast, an exponential smoothing forecasts using α = 0.2, and a 3-month moving average forecast.
Month137244335450534630750829936103511411245a.  Show the naive forecast, an exponential smoothing forecasts using α = 0.2, and a 3-month moving average forecast.b. Compare the MFE, MSE, and MAPE on the modelsc.  Make a conclusion on which model to use.d. Find the alpha (smoothing constant) that minimizes the MSE.
Given the attached data. Answer the following questions for a 6 period moving average. MAD =...
Given the attached data. Answer the following questions for a 6 period moving average. MAD = Average(|A-F|) TS =SUM(A-F)/MAD MSE = Average(A-F)2 1. Compute your forecast for period 51. The potential answers are: A: 4414 units. B: 10290.67 units. C: 8020.83 units. D: 6324.8 units. E: 6351.86 units. 2. Compute the MAD value for period 50. The potential answers are: A: 2655.35 units. B: 3753.86 units. C: 3892.54 units. D: 3732.56 units. E: 3205.7 units. 3. Compute standard deviation of...
For the following data set [ 1, 4, 3, 6, 2, 7, 18, 3, 7, 2,...
For the following data set [ 1, 4, 3, 6, 2, 7, 18, 3, 7, 2, 4, 3, 5, 3, 7] please compute the following 1. measures of central tendency (3 points) 2. standard deviation ( 5 points) 3. is 18 an outlier? (5 points) 4. describe the shape of the distribution (2 points)
Using the stock prices in Problem 3, calculate the exponential three-month moving average for both stocks...
Using the stock prices in Problem 3, calculate the exponential three-month moving average for both stocks where two-thirds of the average weight is placed on the most recent price. Amazon Google $169.64 $600.36 $173.29 $613.40 $180.13 $586.76 $195.81 $544.10 $196.69 $529.02 $204.49 $506.38 $222.52 $603.69 $215.23 $540.96 $216.23 $515.04 $213.51 $592.64 $192.29 $599.39 $173.10 $645.90
1.at is the root mean square error (RMSE) for a "next period forecast" using 3-month moving...
1.at is the root mean square error (RMSE) for a "next period forecast" using 3-month moving average model for these three years of demand? Give your answer as an integer. 2.at is the root mean square error (RMSE) for a "next period forecast" using naive model for these three years of demand? Give your answer as an integer 3.What is the root mean square error (RMSE) for a "next period forecast" using cumulative model for these three years of demand?...
Table 6-3. Calculation of MAD Time Period      Actual Sales      3 Month Moving Average          Absolute Deviation     
Table 6-3. Calculation of MAD Time Period      Actual Sales      3 Month Moving Average          Absolute Deviation        Weighted Moving Average W=.1,.3,.6         Absolute Deviation        Exponential Smoothing Ft = 350 Absolute Deviation 1          230                                                      350       2          238                                                      326       3          260                                                      308       4          275      243                  250                  299       5          300      258                  267                  294       6          285      278                  289                  295       7          270      287                  289                  293       8          290      285                  278                  289       9          305      282                  284                  289       10        320      288                  297                  292       11        335      305                  313                  298       12                    320                  328                  305       SUM =                           n =                                                                                MAD    73) Refer to Table 6-3. Calculate MAD for all forecasting models. The model you would use for your forecast, based on MAD is _____________________________________. Please show work.  
Consider the following two sample data sets. Set​ 1: 5 3 2 8 6 Set​ 2:...
Consider the following two sample data sets. Set​ 1: 5 3 2 8 6 Set​ 2: 3 12 13 2 7 a. Calculate the coefficient of variation for each data set. b. Which data set has more​ variability? a. The coefficient of variation for set 1 is nothing ​%. ​(Round to one decimal place as​ needed.)
(a) Develop a five month average forecast. Compute MSE and a forecast for month 13.
Consider the following time series data Month 1 2 3 4 5 6 7 8 9 10 11 12 Value 90 89 86 91 90 91 88 86 91 93 90 88   (a) Develop a five month average forecast. Compute MSE and a forecast for month 13. (b) Use α = 0.2 to compute the exponential smoothing values for the time series. Compute MSE and a forecast for month 13. ( c) Compare the result for the five month...
3 dplyr Let’s work with the data set diamonds : data(diamonds) head(diamonds) A) Calculate the average...
3 dplyr Let’s work with the data set diamonds : data(diamonds) head(diamonds) A) Calculate the average price of a diamond: [your code here] B) Use group_by() to group diamonds by color, then use summarise() to calculate the average price and the standard deviation in price by color: [your code here) C) Use group_by() to group diamonds by cut, then use summarise() to count the number of observations by cut: [your code here] D) Use filter() to remove observations with a...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT