In: Statistics and Probability
a) i)
µ = 100
σ = 12
P( X ≤ 80 ) = P( (X-µ)/σ ≤ (80-100)
/12)
=P(Z ≤ -1.667 ) =
0.04779 (answer)
.
ii)
µ = 100
σ = 12
we need to calculate probability for ,
P ( 75 < X <
115 )
=P( (75-100)/12 < (X-µ)/σ < (115-100)/12 )
P ( -2.083 < Z <
1.250 )
= P ( Z < 1.250 ) - P ( Z
< -2.083 ) =
0.8944 - 0.0186 =
0.8757
...........
b)
µ = 100
σ = 12
P ( X ≥ 125.00 ) = P( (X-µ)/σ ≥ (125-100) /
12)
= P(Z ≥ 2.083 ) = P( Z <
-2.083 ) = 0.0186 = 1.86%
(answer)
.........
c)
µ = 100
σ = 12
P( X ≤ 90 ) = P( (X-µ)/σ ≤ (90-100)
/12)
=P(Z ≤ -0.833 ) = 0.20233
the number of bills less than 90 will be = 300*0.20233
= 60.699 ~ 61 (round up)
d)
µ= 100
σ = 12
proportion= 0.15
Z value at 0.15 =
-1.04 (excel formula =NORMSINV(
0.15 ) )
z=(x-µ)/σ
so, X=zσ+µ= -1.04 *
12 + 100
X = 87.56
(answer)
thanks
revert back for doubt