In: Statistics and Probability
Suppose that in the Grand Canyon, a random sample of 23 Anna's hummingbirds ( a species of hummingbird ) was taken, and their weights averaged 4.15 grams(g) with a sample standard deviation of s=0.7. (PLEASE SHOW ALL WORK AND KEEP ALL DIGITS FOR THE ANSWERS.)
(a) Find and interpret 95% and 99% confidence intervals for the population mean weight of Anna's hummingbirds.
(b) Find the sample size you would have to have taken so that the error E for a 92% confidence interval is no more than 0.03 g.
a)
Level of Significance ,    α =   
0.05          
degree of freedom=   DF=n-1=   22  
       
't value='   tα/2=   2.074   [Excel
formula =t.inv(α/2,df) ]      
          
       
Standard Error , SE = s/√n =   0.7000   /
√   23   =   0.1460
margin of error , E=t*SE =   2.0739  
*   0.1460   =   0.3027
          
       
confidence interval is       
           
Interval Lower Limit = x̅ - E =    4.15  
-   0.302703   =   3.8473
Interval Upper Limit = x̅ + E =    4.15  
-   0.302703   =   4.4527
95%   confidence interval is (  
3.85   < µ <   4.45   )
          
       
---------------
Level of Significance ,    α =   
0.01          
degree of freedom=   DF=n-1=   22  
       
't value='   tα/2=   2.819   [Excel
formula =t.inv(α/2,df) ]      
          
       
Standard Error , SE = s/√n =   0.7000   /
√   23   =   0.1460
margin of error , E=t*SE =   2.8188  
*   0.1460   =   0.4114
          
       
confidence interval is       
           
Interval Lower Limit = x̅ - E =    4.15  
-   0.411426   =   3.7386
Interval Upper Limit = x̅ + E =    4.15  
-   0.411426   =   4.5614
99%   confidence interval is (  
3.74   < µ <   4.56  
)
===============
b)
Standard Deviation ,   σ =   
0.7          
       
sampling error ,    E =   0.03  
           
   
Confidence Level ,   CL=   92%  
           
   
          
           
   
alpha =   1-CL =   8%  
           
   
Z value =    Zα/2 =    1.751   [excel
formula =normsinv(α/2)]      
       
          
           
   
Sample Size,n = (Z * σ / E )² = (   1.751  
*   0.7   /   0.03   ) ²
=   1668.669
          
           
   
          
           
   
So,Sample Size
needed=       1669