In: Statistics and Probability
Calculate the Z-score for each data point. | |||
Employee | Salary | Years of Employment | Z-score |
Sarah | $ 62,500.00 | 3 | |
Amanda | $ 74,250.00 | 5 | |
Rachel | $ 68,500.00 | 3 | |
Brad | $ 55,000.00 | 2 | |
Josh | $ 61,000.00 | 4 | |
Jim | $ 32,000.00 | 2 | |
Cheri | $ 71,500.00 | 2 | |
Danuta | $ 90,000.00 | 7 | |
Evan | $ 76,500.00 | 3 |
Please show the formulas used for each.
For Salary:
Mean = 591250/9= 65,694
Standard Deviation 16,218
For Years of employment:
Mean = 31/9 =3.4444
Standard Deviation = 1.6667
Employee | Salary | Years of Employment | Z-score for salary | Z score for Years of experience |
Sarah | $ 62,500.00 | 3 | (62,500-65,694)/ 16,218 = -0.1969 | (3 - 3.4444)/1.6667 = - 0.2666 |
Amanda | $ 74,250.00 | 5 | (74,250-65,694)/ 16,218 = 0.5276 | 5 - 3.4444)/1.6667 = 0.9333 |
Rachel | $ 68,500.00 | 3 | (68,500-65,694)/ 16,218 = 0.1730 | 3 - 3.4444)/1.6667 = - 0.2666 |
Brad | $ 55,000.00 | 2 | (55,000-65,694)/ 16,218 = -0.6594 | 2 - 3.4444)/1.6667 = - 0.8666 |
Josh | $ 61,000.00 | 4 | (61,000-65,694)/ 16,218 = -0.2894 | 4 - 3.4444)/1.6667 = 0.3334 |
Jim | $ 32,000.00 | 2 | (32,000-65,694)/ 16,218 = -2.0776 | 2 - 3.4444)/1.6667 = - 0.8666 |
Cheri | $ 71,500.00 | 2 | (71,500-65,694)/ 16,218 = 0.3580 | 2 - 3.4444)/1.6667 = - 0.8666 |
Danuta | $ 90,000.00 | 7 | (90,000-65,694)/ 16,218 = 1.4987 | 7 - 3.4444)/1.6667 = 2.1333 |
Evan | $ 76,500.00 | 3 | (76,500-65,694)/ 16,218 = 0.6663 | 3 - 3.4444)/1.6667 = - 0.2666 |