In: Statistics and Probability
For the data set shown below
x y
20 98
30 95
40 91
50 83
60 70
(a) Use technology to find the estimates of β0 and β1.
β0≈b0equals=114.60
(Round to two decimal places as needed.)
β1≈b1=−0.68
(Round to two decimal places as needed.)
(b) Use technology to compute the standard error, the point estimate for σ.
Se=__?__
(Round to four decimal places as needed.)
| X | Y | XY | X² | Y² |
| 20 | 98 | 1960 | 400 | 9604 |
| 30 | 95 | 2850 | 900 | 9025 |
| 40 | 91 | 3640 | 1600 | 8281 |
| 50 | 83 | 4150 | 2500 | 6889 |
| 60 | 70 | 4200 | 3600 | 4900 |
| Ʃx = | Ʃy = | Ʃxy = | Ʃx² = | Ʃy² = |
| 200 | 437 | 16800 | 9000 | 38699 |
| Sample size, n = | 5 |
| SSxx = Ʃx² - (Ʃx)²/n = | 1000 |
| SSyy = Ʃy² - (Ʃy)²/n = | 505.2 |
| SSxy = Ʃxy - (Ʃx)(Ʃy)/n = | -680 |
a) Slope, b1 = SSxy/SSxx = -0.68
y-intercept, b0 = y̅ -b1* x̅ = 114.6
b) Sum of Square error, SSE = SSyy -SSxy²/SSxx = 42.8
Standard error, se = √(SSE/(n-2)) = 3.7771
Using Excel output is:
| SUMMARY OUTPUT | ||||||
| Regression Statistics | ||||||
| Multiple R | 0.956703 | |||||
| R Square | 0.915281 | |||||
| Adjusted R Square | 0.887041 | |||||
| Standard Error | 3.777124 | |||||
| Observations | 5 | |||||
| ANOVA | ||||||
| df | SS | MS | F | Significance F | ||
| Regression | 1 | 462.4 | 462.4 | 32.41121 | 0.010744 | |
| Residual | 3 | 42.8 | 14.26667 | |||
| Total | 4 | 505.2 | ||||
| Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
| Intercept | 114.6 | 5.067544 | 22.61451 | 0.000189 | 98.47281 | 130.7272 |
| X | -0.68 | 0.119443 | -5.69308 | 0.010744 | -1.06012 | -0.29988 |