In: Math
Given the data set below, use it to answer the following questions:
10, 20, 30, 40, 50
a. Find the standard deviation
b. Add 5 to each data set value and find the standard deviation.
c. Subtract 5 from each value and find the standard deviation.
d. Multiply by 5 on each value and find the standard deviation.
e. Divide by 5 on each value and find the standard deviation.
f. Generalize the results in parts a-e.
X | (X - X̄)² |
10 | 400.000 |
20 | 100.000 |
30 | 0.000 |
40 | 100.000 |
50 | 400.000 |
.
X | (X - X̄)² | |
total sum | 150 | 1000.00 |
n | 5 | 5 |
.
mean = ΣX/n = 150.000 / 5 = 30.0000
a) sample std dev = √ [ Σ(X - X̄)²/(n-1)]
= √ (1000/4)
= 15.8114
b) sample std dev = √ [ Σ(X -
X̄)²/(n-1)] = √ (1000/4)
= 15.8114
c) sample std dev = √ [ Σ(X - X̄)²/(n-1)] = √ (1000/4) = 15.8114
d)
X | (X - X̄)² |
50 | 10000.000 |
100 | 2500.000 |
150 | 0.000 |
200 | 2500.000 |
250 | 10000.000 |
X | (X - X̄)² | |
total sum | 750 | 25000.00 |
n | 5 | 5 |
mean = ΣX/n = 750.000
/ 5 = 150.0000
sample std dev = √ [ Σ(X - X̄)²/(n-1)] =
√ (25000/4) =
79.0569
e)
X | (X - X̄)² |
2 | 16.000 |
4 | 4.000 |
6 | 0.000 |
8 | 4.000 |
10 | 16.000 |
X | (X - X̄)² | |
total sum | 30 | 40.00 |
n | 5 | 5 |
mean = ΣX/n = 30.000
/ 5 = 6.0000
sample std dev = √ [ Σ(X - X̄)²/(n-1)] =
√ (40/4) =
3.1623
f)
on adding or subtracting some value on each value, std dev does not change.
but Multiply by any number on each value , then new std dev = that number*std dev
and Divide by a number on each value , then new std dev = std dev / that number