In: Statistics and Probability
Consider the x, y data:
x-data (explanatory variables):
10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90,
95, 100
y-data (response variables):
1359.9265, 1353.3046, 220.7435, 964.6208, 1861.9920, 1195.3707,
1702.0145, 2002.0900, 1129.1860, 1864.5241, 1444.2239, 2342.5453,
2410.9056, 2766.2245, 2135.2241, 3113.7662, 4311.7260, 3313.1042,
4072.0945
Compute a best fit line to the data. Report:
a. The slope coefficient, β1: ___
b. The intercept coefficient, β0: ___
c. The standard error of the residuals σε: ___
d. The Adjusted R-squared correlation coefficient Adjusted
R2: ___
e. Is the slope coefficient significant at, at least the 95% level
of confidence?
no
yes
f. Is the intercept coefficient significant at, at least the 95%
level of confidence?
yes
no
using regression analysis from excel we get the following output shown here for the data given in question,
SUMMARY OUTPUT | |||||||
Regression Statistics | |||||||
Multiple R | 0.859509051 | ||||||
R Square | 0.738755808 | ||||||
Adjusted R Square | 0.723388503 | ||||||
Standard Error | 558.141958 | ||||||
Observations | 19 | ||||||
ANOVA | |||||||
df | SS | MS | F | Significance F | |||
Regression | 1 | 14975886.13 | 14975886 | 48.07321704 | 2.41661E-06 | ||
Residual | 17 | 5295881.57 | 311522.4 | ||||
Total | 18 | 20271767.7 | |||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | |
Intercept | 299.2933189 | 287.2736004 | 1.041841 | 0.312076215 | -306.8009982 | 905.3876361 | -306.8009982 |
X Variable 1 | 32.41819516 | 4.67559881 | 6.933485 | 2.41661E-06 | 22.55354395 | 42.28284636 | 22.55354395 |
form out put of excel
ANS
a)
32.4181951578947
b)
299.29331
c)
558.141958
d)
0.723388503
we are allowed to solve four sub parts only thank you