In: Statistics and Probability
y | 10 | 11 | 15 | 15 | 20 | 24 | 27 | 32 |
x1 | 2 | 5 | 5 | 9 | 7 | 11 | 16 | 20 |
x2 | 16 | 10 | 13 | 10 | 2 | 8 | 7 | 4 |
Construct a? 95% confidence interval for the dependent variable when x1=9 and x2=14?
The 95% prediction interval for the dependent varible when x1=9 and x2=14?
Using MINITAB
Choose Stat > Regression > Regression.
In Response, enter Y.
In Predictors, enter x1 x2.
click on option
go to predictor interval and put the values x1 = 9 and x2 = 14
confidence level = 95
select the check box of Confidence limits and Prediction limits
click ok
Session window output
MTB > Regress 'Y' 2 'X1' 'X2';
SUBC> Constant;
SUBC> Predict 9 14;
SUBC> CLimits 'CLIM1'-'CLIM2';
SUBC> PLimits 'PLIM1'-'PLIM2';
SUBC> Brief 1.
Regression Analysis: Y versus X1, X2
The regression equation is
Y = 12.3 + 1.06 X1 - 0.347 X2
Predictor Coef SE
Coef T
P
Constant 12.338 4.229
2.92 0.033
X1
1.0615 0.2159 4.92 0.004
X2 -0.3474
0.2875 -1.21 0.281
S = 2.64526 R-Sq = 92.0% R-Sq(adj) =
88.8%
Analysis of Variance
Source
DF SS
MS
F P
Regression
2 400.51 200.26 28.62 0.002
Residual Error 5 34.99 7.00
Total
7 435.50
Predicted Values for New Observations
New Obs
Fit SE
Fit 95%
CI 95%
PI
1
17.028 1.732
(12.575, 21.481) (8.900, 25.156)
Values of Predictors for New Observations
New Obs X1 X2
1 9.00 14.0