In: Statistics and Probability
| y | 10 | 11 | 15 | 15 | 20 | 24 | 27 | 32 | 
| x1 | 2 | 5 | 5 | 9 | 7 | 11 | 16 | 20 | 
| x2 | 16 | 10 | 13 | 10 | 2 | 8 | 7 | 4 | 
Construct a? 95% confidence interval for the dependent variable when x1=9 and x2=14?
The 95% prediction interval for the dependent varible when x1=9 and x2=14?
Using MINITAB
Choose Stat > Regression > Regression.
In Response, enter Y.
In Predictors, enter x1 x2.
click on option
go to predictor interval and put the values x1 = 9 and x2 = 14
confidence level = 95
select the check box of Confidence limits and Prediction limits
click ok
Session window output
MTB > Regress 'Y' 2 'X1' 'X2';
SUBC>   Constant;
SUBC>   Predict 9 14;
SUBC>     CLimits 'CLIM1'-'CLIM2';
SUBC>     PLimits 'PLIM1'-'PLIM2';
SUBC>   Brief 1.
Regression Analysis: Y versus X1, X2
The regression equation is
Y = 12.3 + 1.06 X1 - 0.347 X2
Predictor     Coef     SE
Coef      T     
P
Constant    12.338    4.229
   2.92 0.033
X1        
1.0615   0.2159   4.92 0.004
X2        -0.3474  
0.2875 -1.21 0.281
S = 2.64526   R-Sq = 92.0%   R-Sq(adj) =
88.8%
Analysis of Variance
Source           
DF      SS     
MS       
F      P
Regression      
2     400.51 200.26 28.62 0.002
Residual Error   5 34.99    7.00
Total          
   7 435.50
Predicted Values for New Observations
New Obs    
Fit         SE
Fit        95%
CI          95%
PI
     
1         
17.028   1.732       
(12.575, 21.481) (8.900, 25.156)
Values of Predictors for New Observations
New Obs    X1    X2
      1    9.00 14.0