In: Statistics and Probability
Solution :
Given that ,
mean = = 80
standard deviation = = 4
a) P(x < 76) = P[(x - ) / < (76 - 80) / 4]
= P(z < -1)
Using z table,
= 0.1587
b) P(x > 83) = 1 - p( x< 83)
=1- p P[(x - ) / < (83 - 80) / 4]
=1- P(z < 0.75)
Using z table,
= 1 - 0.7734
= 0.2266
c) P(76 < x < 83) = P[(76 - 80)/ 4) < (x - ) / < (83 - 80) /4 ) ]
= P(-1 < z < 0.75)
= P(z < 0.75) - P(z < -1)
Using z table,
= 0.7734 - 0.1587
= 0.6147
d) Using standard normal table,
P(Z < z) = 25%
= P(Z < z) = 0.25
= P(Z < -0.6745 ) = 0.25
z = -0.6745
Using z-score formula,
x = z * +
x = -0.6745 * 4 + 80
x = 77.30