Question

In: Chemistry

When an iron bar of mass m is dropped through a height difference Δh, its potential...

When an iron bar of mass m is dropped through a height difference Δh, its potential energy changes by the amount mgΔh, where g is the acceleration of gravity, equal to 9.81 m s-2. Suppose that when the bar hits the ground, all that energy is converted to heat, increasing the temperature of the bar. If the specific heat capacity of the material in the bar is 0.444 J K-1 g-1, calculate the height from which the bar must be dropped to increase the temperature of the bar by 2.24 °C.

Solutions

Expert Solution


Related Solutions

A container with mass m kg is dropped by a helicopter from height h km at...
A container with mass m kg is dropped by a helicopter from height h km at time t=0, with zero velocity. from the outset, its fall is controlled by gravity and the force of air resitance, f(v)= -kv, where v is the current velocity of the container. in t seconds after the drop, a parachute opens, resulting in an increase of air resistance up to f(v) = -kv. determine the time t at which the container touches the ground. and...
The mass m is dropped from a height h. Find the magnitude of Coriolis deflection and...
The mass m is dropped from a height h. Find the magnitude of Coriolis deflection and its direction (i.e north south east or west). You can assume location being in the northern hemisphere at latitude θ and that rotation of the Earth is slow.
A particle of charge q and mass m is accelerated from rest through a potential difference...
A particle of charge q and mass m is accelerated from rest through a potential difference V, after which it encounters a uniform magnetic field B perpendicular to its velocity v. If the particle moves in a plane perpendicular to B, (a) Find an expression for the radius of its circular path in terms of q, V and B. (b) If the particle is an electron, what must the potential difference be so it describes a circular path of radius...
A ball of mass 0.120 kg is dropped from rest from a height of 1.25 m....
A ball of mass 0.120 kg is dropped from rest from a height of 1.25 m. It rebounds from the floor to reach a height of 0.600 m. What impulse was given to the ball by the floor? magnitude? direction? upward or downward
a 2.00 kg ball is dropped from a height of 1.23 m and when it hits...
a 2.00 kg ball is dropped from a height of 1.23 m and when it hits the ground it receives an upward impulse of 15.7N*s. To what height does the ball bounce?
Chapter 08, Problem 024. A block of mass m = 1.30 kg is dropped from height...
Chapter 08, Problem 024. A block of mass m = 1.30 kg is dropped from height h = 59.0 cm onto a spring of spring constant k = 1130 N/m (see the figure). Find the maximum distance the spring is compressed.
When an iron object rusts, its mass increases. When a match burns, its mass decreases. Do
When an iron object rusts, its mass increases. When a match burns, its mass decreases. Do these observations violate the law of conservation of mass? Explain.
A 0.63-m aluminum bar is held with its length parallel to the east-west direction and dropped...
A 0.63-m aluminum bar is held with its length parallel to the east-west direction and dropped from a bridge. Just before the bar hits the river below, its speed is 27 m/s, and the emf induced across its length is 5.5 x 10-4 V. Assuming the horizontal component of the Earth's magnetic field at the location of the bar points directly north, (a)determine the magnitude of the horizontal component of the Earth's magnetic field, and (b) state whether the east...
A 0.70-m aluminum bar is held with its length parallel to the east-west direction and dropped...
A 0.70-m aluminum bar is held with its length parallel to the east-west direction and dropped from a bridge. Just before the bar hits the river below, its speed is 29 m/s, and the emf induced across its length is 7.0 x 10-4 V. Assuming the horizontal component of the Earth's magnetic field at the location of the bar points directly north, (a) determine the magnitude of the horizontal component of the Earth's magnetic field, and (b) state whether the...
A 0.74-m aluminum bar is held with its length parallel to the east-west direction and dropped...
A 0.74-m aluminum bar is held with its length parallel to the east-west direction and dropped from a bridge. Just before the bar hits the river below, its speed is 25 m/s, and the emf induced across its length is 7.9 x 10-4 V. Assuming the horizontal component of the Earth's magnetic field at the location of the bar points directly north, (a) determine the magnitude of the horizontal component of the Earth's magnetic field, and (b) state whether the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT