Question

In: Physics

Chapter 08, Problem 024. A block of mass m = 1.30 kg is dropped from height...

Chapter 08, Problem 024. A block of mass m = 1.30 kg is dropped from height h = 59.0 cm onto a spring of spring constant k = 1130 N/m (see the figure). Find the maximum distance the spring is compressed.

Solutions

Expert Solution

This can be solved by law of conservation of energy. Initally the spring is not compressed so we have only potential energy due to height of block. After block hits the spring the potential energy of block is stored in the form of potential energy of spring.The detailed solution is given below:

Thumbs up if you like the solution :)


Related Solutions

A container with mass m kg is dropped by a helicopter from height h km at...
A container with mass m kg is dropped by a helicopter from height h km at time t=0, with zero velocity. from the outset, its fall is controlled by gravity and the force of air resitance, f(v)= -kv, where v is the current velocity of the container. in t seconds after the drop, a parachute opens, resulting in an increase of air resistance up to f(v) = -kv. determine the time t at which the container touches the ground. and...
A ball of mass 0.120 kg is dropped from rest from a height of 1.25 m....
A ball of mass 0.120 kg is dropped from rest from a height of 1.25 m. It rebounds from the floor to reach a height of 0.600 m. What impulse was given to the ball by the floor? magnitude? direction? upward or downward
A block of mass 4kg is dropped from a height of 2 meters on Earth. If...
A block of mass 4kg is dropped from a height of 2 meters on Earth. If that block is taken to a different planet, where the acceleration due to gravity is 1/4 as strong as it is on Earth, how high should the block be dropped so that it hits the ground with the same final velocity as on Earth? (Hint: you do not need to use gravitational force for this) Express your answer to a maximum of 2 significant...
Block A in the figure below has mass 1.30 kg , and block B has mass...
Block A in the figure below has mass 1.30 kg , and block B has mass 2.85 kg . The blocks are forced together, compressing a spring S between them; then the system is released from rest on a level, frictionless surface. The spring, which has negligible mass, is not fastened to either block and drops to the surface after it has expanded. Block B acquires a speed of 1.20 m/s . Part A What is the final speed of...
A steel ball with a mass of 0.600 kg is dropped from an initial height of...
A steel ball with a mass of 0.600 kg is dropped from an initial height of 2.80 m onto a metal plate. The steel ball bounces multiple times and on each bounce it returns to 75% of its previous maximum height. A)What is the initial mechanical energy of the ball-Earth system, just after the ball is released from its initial height? Use the surface of the steel plate as the y = 0 reference point for the gravitational potential energy....
a 2.00 kg ball is dropped from a height of 1.23 m and when it hits...
a 2.00 kg ball is dropped from a height of 1.23 m and when it hits the ground it receives an upward impulse of 15.7N*s. To what height does the ball bounce?
The mass m is dropped from a height h. Find the magnitude of Coriolis deflection and...
The mass m is dropped from a height h. Find the magnitude of Coriolis deflection and its direction (i.e north south east or west). You can assume location being in the northern hemisphere at latitude θ and that rotation of the Earth is slow.
An object with mass m = 0.6 kg is dropped from the top of the building...
An object with mass m = 0.6 kg is dropped from the top of the building and falls 21 m down in front of the cafe. 1.1 Calculate the speed of the object as it hits the ground and calculate the time for the fall. Neglect in this question the air resistance. In a more accurate calculation we need to take air resistance into account. In a wind tunnel the air resistance of the object has been measured giving rise...
An object with mass m = 0.6 kg is dropped from the top of the building...
An object with mass m = 0.6 kg is dropped from the top of the building and falls 21 m down in front of the cafe. 1.1 Calculate the speed of the object as it hits the ground and calculate the time for the fall. Neglect in this question the air resistance. In a more accurate calculation we need to take air resistance into account. In a wind tunnel the air resistance of the object has been measured giving rise...
A 4.00 −kg ball is dropped from a height of 14.0 m above one end of...
A 4.00 −kg ball is dropped from a height of 14.0 m above one end of a uniform bar that pivots at its center. The bar has mass 5.50 kg and is 7.40 m in length. At the other end of the bar sits another 5.30 −kg ball, unattached to the bar. The dropped ball sticks to the bar after the collision. How high will the other ball go after the collision?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT