Question

In: Statistics and Probability

1/The heights of adult men in America are normally distributed, with a mean of 69.2 inches...

1/The heights of adult men in America are normally distributed, with a mean of 69.2 inches and a standard deviation of 2.65 inches. The heights of adult women in America are also normally distributed, but with a mean of 64.5 inches and a standard deviation of 2.51 inches.
a) If a man is 6 feet 3 inches tall, what is his z-score (to two decimal places)?
z =
b) What percentage of men are SHORTER than 6 feet 3 inches? Round to nearest tenth of a percent.
%
c) If a woman is 5 feet 11 inches tall, what is her z-score (to two decimal places)?
z =
d) What percentage of women are TALLER than 5 feet 11 inches? Round to nearest tenth of a percent.
e) Who is relatively taller: a 6'3" American man or a 5'11" American woman? Defend your choice in a meaningful sentence.

Suppose that about 84% of graduating students attend their graduation. A group of 35 students is randomly chosen, and let X be the number of students who attended their graduation.

Please show the following answers to 4 decimal places.

  1. What is the distribution of X? X ~ ? B U N  (,)
  2. What is the probability that exactly 25 number of students who attended their graduation in this study?
  3. What is the probability that less than 25 number of students who attended their graduation in this study?
  4. What is the probability that at least 25 number of students who attended their graduation in this study?
  5. What is the probability that between 22 and 26 (including 22 and 26) number of students who attended their graduation in this study?
  6. 3/According to the American Red Cross, 11% of all Connecticut residents have Type B blood. A random sample of 20 Connecticut residents is taken.

    X=X=the number of CT residents that have Type B blood, of the 20 sampled.
    What is the expected value of the random variable XX?
    2.28 2.26 2.04 2.2 1.9 2.08

  7. 4/The owner of a small deli is trying to decide whether to discontinue selling magazines. He suspects that only 10.7% of his customers buy a magazine and he thinks that he might be able to use the display space to sell something more profitable. Before making a final decision, he decides that for one day he will keep track of the number of customers that buy a magazine. Assuming his suspicion that 10.7% of his customers buy a magazine is correct, what is the probability that exactly 6 out of the first 12 customers buy a magazine?

Solutions

Expert Solution


Related Solutions

1.The heights of adult men in America are normally distributed, with a mean of 69.3 inches...
1.The heights of adult men in America are normally distributed, with a mean of 69.3 inches and a standard deviation of 2.63 inches. The heights of adult women in America are also normally distributed, but with a mean of 64.2 inches and a standard deviation of 2.54 inches. a) If a man is 6 feet 3 inches tall, what is his z-score (to two decimal places)? z = b) What percentage of men are SHORTER than 6 feet 3 inches?...
The heights of adult men in America are normally distributed, with a mean of 69.4 inches...
The heights of adult men in America are normally distributed, with a mean of 69.4 inches and a standard deviation of 2.66 inches. The heights of adult women in America are also normally distributed, but with a mean of 64.4 inches and a standard deviation of 2.59 inches. a) If a man is 6 feet 3 inches tall, what is his z-score (to two decimal places)? z = b) What percentage of men are SHORTER than 6 feet 3 inches?...
The heights of adult men in America are normally distributed, with a mean of 69.5 inches...
The heights of adult men in America are normally distributed, with a mean of 69.5 inches and a standard deviation of 2.65 inches. The heights of adult women in America are also normally distributed, but with a mean of 64.7 inches and a standard deviation of 2.53 inches. a) If a man is 6 feet 3 inches tall, what is his z-score (to two decimal places)? z =   b) What percentage of men are shorter than 6 feet 3 inches?...
The heights of adult men in America are normally distributed, with a mean of 69.5 inches...
The heights of adult men in America are normally distributed, with a mean of 69.5 inches and a standard deviation of 2.68 inches. The heights of adult women in America are also normally distributed, but with a mean of 64.4 inches and a standard deviation of 2.53 inches. a) If a man is 6 feet 3 inches tall, what is his z-score (to two decimal places)? b) What percentage of men are SHORTER than 6 feet 3 inches? Round to...
The heights of males in a population are approximately normally distributed with mean 69.2 inches and...
The heights of males in a population are approximately normally distributed with mean 69.2 inches and standard deviation 2.92. The heights of females in the same population are approximately normally distributed with mean 64.1 inches and standard deviation 2.75. a. Suppose one male from this age group is selected at random and one female is independently selected at random and their heights added. Find the mean and standard error of the sampling distribution of this sum. Mean = Standard deviation...
Adult male height is normally distributed with a mean of 69.2 inches and a standard deviation...
Adult male height is normally distributed with a mean of 69.2 inches and a standard deviation of 2.28 inches. a) If an adult male is randomly selected, what is the probability that the adult male has a height greater than 69.1 inches? Round your final answer to four decimal places. b) If 28 adult male are randomly selected, what is the probability that they have a mean height greater than 70 inches? Round your final answer to four decimal places.
Assume that the heights of men are normally distributed with a mean of 70.7 inches and...
Assume that the heights of men are normally distributed with a mean of 70.7 inches and a standard deviation of 2.8 inches. If 64 men are randomly selected, Find:- (a) Describe the sampling distribution of x. Sketch the distribution. (b) Find the probability that they have a mean height greater than 71.7 inches. (c) Find the probability that they have a mean height between 68.5 and 73 inches. (d) Find the 95th percentile of the heights of men.
Assume that the heights of men are normally distributed with a mean of 68.1 inches and...
Assume that the heights of men are normally distributed with a mean of 68.1 inches and a standard deviation of 2.8 inches. If 64 men are randomly​ selected, find the probability that they have a mean height greater than 69.1 inches. ​(Round your answer to three decimal places​.)
It is estimated that heights of adult men are normally distributed with a mean of 70...
It is estimated that heights of adult men are normally distributed with a mean of 70 inches and a standard deviation 3.3 inches. In one state, the law requires a person to be 68 inches or taller to become a fire fighter. What proportion of adult men will meet this height requirement for becoming a fire fighter in this state? .7291 A person who was denied to become a fire fighter learned that his height was at the 20th percentile....
The distribution of heights of adult women is Normally distributed, with a mean of 65 inches...
The distribution of heights of adult women is Normally distributed, with a mean of 65 inches and a standard deviation of 3.5 inches.Susan's height has a z-score of negative 0.5 when compared to all adult women in this distribution. What does this z-score tell us about how Susan's height compares to other adult women in terms of height?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT