Question

In: Statistics and Probability

The distribution of heights of adult women is Normally distributed, with a mean of 65 inches...

  1. The distribution of heights of adult women is Normally distributed, with a mean of 65 inches and a standard deviation of 3.5 inches.Susan's height has a z-score of negative 0.5 when compared to all adult women in this distribution. What does this z-score tell us about how Susan's height compares to other adult women in terms of height?

Solutions

Expert Solution

A z-score is the number of standard deviations from the mean value of the reference population

The z-score in the center of the curve is zero. The z-scores to the right of the mean are positive and the z-scores to the left of the mean are negative. If you look up the score in the z-table, you can tell what percentage of the population is above or below your score.

Given

mean= 65 inches

standard deviation = 3.5 inches

Z- score = - 0.5

The z score tells you how many standard deviations from the mean your score is.

So, the z score = - 0.5 tells -0.5 standard deviations below the mean.

And

From Z- table

  

i.e., 30.85%

This tells us that the percentage of adult women whose height is less than the Susan's height is 30.85%

i.e., 30.85% of the adult women are less than the Susan's height.

or

100-30.85= 69.15%

69.15% of the adult women are greater than Susan's height.


Related Solutions

6. The heights of women are normally distributed with a mean of 65 in. and a...
6. The heights of women are normally distributed with a mean of 65 in. and a standard deviation of 2.5 in. The heights of men are normally distributed with a mean of 70 in. and a standard deviation of 3.0 in. Relative to their peers, who would be considered taller: A 68 in. woman or a 74 in. man? 7. The lengths of adult blue whales are normally distributed with a mean of 30 meters and a standard deviation of...
heights of women are normally distributed with a mean of 63.6 inches and a std.dev of...
heights of women are normally distributed with a mean of 63.6 inches and a std.dev of 2.5 find the 83rd percentile if one woman is randomly selected find the probability she has a height greater thanks 6 ft if 16 women are randomly selected find the prob their mean weight is greater than 5’6
The heights of women follow an approximately normal distribution with a mean of 65 inches and...
The heights of women follow an approximately normal distribution with a mean of 65 inches and a standard deviation of 3.5 inches. Use this information and a z-table to answer the following questions. A. Bianca is 60 inches tall. Find the z-score for Bianca's height. Round your z-score to 2 decimal places. B. Find the proportion of the population Bianca is taller than. Round your proportion to 4 decimal places. C. What proportion of women are between 61.5 inches and...
The heights of adult men in America are normally distributed, with a mean of 69.4 inches...
The heights of adult men in America are normally distributed, with a mean of 69.4 inches and a standard deviation of 2.66 inches. The heights of adult women in America are also normally distributed, but with a mean of 64.4 inches and a standard deviation of 2.59 inches. a) If a man is 6 feet 3 inches tall, what is his z-score (to two decimal places)? z = b) What percentage of men are SHORTER than 6 feet 3 inches?...
The heights of adult men in America are normally distributed, with a mean of 69.5 inches...
The heights of adult men in America are normally distributed, with a mean of 69.5 inches and a standard deviation of 2.65 inches. The heights of adult women in America are also normally distributed, but with a mean of 64.7 inches and a standard deviation of 2.53 inches. a) If a man is 6 feet 3 inches tall, what is his z-score (to two decimal places)? z =   b) What percentage of men are shorter than 6 feet 3 inches?...
The heights of adult men in America are normally distributed, with a mean of 69.5 inches...
The heights of adult men in America are normally distributed, with a mean of 69.5 inches and a standard deviation of 2.68 inches. The heights of adult women in America are also normally distributed, but with a mean of 64.4 inches and a standard deviation of 2.53 inches. a) If a man is 6 feet 3 inches tall, what is his z-score (to two decimal places)? b) What percentage of men are SHORTER than 6 feet 3 inches? Round to...
The heights of North American women are normally distributed with a mean of 64 inches and...
The heights of North American women are normally distributed with a mean of 64 inches and a standard deviation of 2 inches. (a) What is the probability that a randomly selected woman is taller than 66 inches? (b) A random sample of 40 women is selected. What is the probability that the sample mean height is greater than 66 inches?
Heights of women are normally distributed with a mean of 63.8 inches and a standard deviation...
Heights of women are normally distributed with a mean of 63.8 inches and a standard deviation of 2.6 inches. a) find the probability that the height of a single randomly chosen women is less than 62 inches b) find the probability that the mean height of a sample of 16 women is less than 62 inches
Assume that women have heights that are normally distributed with a mean of 64.1 inches and...
Assume that women have heights that are normally distributed with a mean of 64.1 inches and a standard deviation of 2.5 inches. Find the 85th percentile of women's heights.
[Normal] Heights for American women are normally distributed with parameters μ = 65 inches and σ...
[Normal] Heights for American women are normally distributed with parameters μ = 65 inches and σ = 2.5 inches. a. What is the probability that a randomly selected woman is shorter than 63 inches? b. What height value marks the bottom 8% of the distribution? please show all work used to solve this problem
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT