Question

In: Statistics and Probability

A random sample of 16 pharmacy customers showed the waiting times below (in minutes). 26 16...

A random sample of 16 pharmacy customers showed the waiting times below (in minutes).

26 16 25 18 17 24 18 23
14 20 10 18 19 13 17 16

Click here for the Excel Data File

Find a 90 percent confidence interval for μ, assuming that the sample is from a normal population. (Round your standard deviation answer to 4 decimal places and t-value to 3 decimal places. Round your answers to 3 decimal places.)
  
The 90% confidence interval  to

Solutions

Expert Solution

Given sample data

24,16,25,18,17,24,18,23,14,20,10,18,19,13,17,16

Sample Mean = Sum of values / number of values

= 292 /16

= 18.25

Standard deviation S = (xi - )2 / n-1

where xi are the sample values of x , n =16, ​​​​​​​ = 18.25

(xi - ​​​​​​​ )2  = (24 - 18.25)2 + (16 - 18.25)2 +(25 - 18.25)2 +(18 - 18.25)2 +(17 - 18.25)2 +(24 - 18.25)2 +(18 - 18.25)2 +(23 - 18.25)2 +(14 - 18.25)2 +(20 - 18.25)2 +(10 - 18.25)2 +(18 - 18.25)2 +(19 - 18.25)2 +(13 - 18.25)2 +(17 - 18.25)2 + (16 - 18.25)2

(xi - ​​​​​​​ )2  = 265 , n-1 =15

Standard deviation S = 265 / 15

= 17.666

= 4.203173

Standard deviation = 4.2032 rounded to 4 decimals places

t-value will be obtaine dy the degrees of freedom and value

degrees of freedom = n-1 = 15

= 1 - confidence interval

= 1 - 0.9

= 0.1

The t-value for df=9 and = 0.1 will be 1.753 which can be calculated by the below attached table

90% confidence interval for the mean = t-value * S /

Where S is the standard deviation of the sample

90% confidence interval for the mean = 18.25 1.753 * 4.2032 /

= 18.25 1.753 * 4.2032 / 4

= 18.25 1.753 * 1.0508

= 18.25 1.842052

= (16.40795, 20.09205)

90% confidence interval for the mean is (16.40795, 20.09205)

Standard deviation = 4.2032

t-value = 1.753


Related Solutions

A random sample of 16 pharmacy customers showed the waiting times below (in minutes). Also, the...
A random sample of 16 pharmacy customers showed the waiting times below (in minutes). Also, the sample is from a normal population. Note that σ is unknown. 21 22 22 17 21 17 23 20 20 24 9 22 16 21 22 21 The sample mean is 19.875 and the sample standard deviation is 3.65. Which of the following represents the 80 percent confidence interval for µ? Select one: a. [13.75, 25.25] b. [18.65, 21.10] c. [19.55, 20.425] d. [18.8,...
The waiting times​ (in minutes) of a random sample of 20 people at a bank have...
The waiting times​ (in minutes) of a random sample of 20 people at a bank have a sample standard deviation of 3.4 minutes. Construct a confidence interval for the population variance sigma squared and the population standard deviation sigma. Use a 90 % level of confidence. Assume the sample is from a normally distributed population.
1. The waiting times​ (in minutes) of a random sample of 21 people at a bank...
1. The waiting times​ (in minutes) of a random sample of 21 people at a bank have a sample standard deviation of 3.5 minutes. Construct a confidence interval for the population variance sigma squared and the population standard deviation sigma. Use a 99 % level of confidence. Assume the sample is from a normally distributed population. What is the confidence interval for the population variance sigma squared​? 2.You are given the sample mean and the population standard deviation. Use this...
Waiting times (in minutes) of customers at a bank where all customers enter a single waiting...
Waiting times (in minutes) of customers at a bank where all customers enter a single waiting line and a bank where customers wait in individual lines at three different teller windows are listed below. Find the coefficient of variation for each of the two sets of data, then compare the variation. Bank A (single line): 6.5 6.6 6.7 6.9 7.1 7.3 7.4 7.6 7.7 7.8 Bank B (individual lines): 4.4 5.4 5.7 6.2 6.7 7.7 7.8 8.4 9.4 9.9 The...
Waiting times​ (in minutes) of customers at a bank where all customers enter a single waiting...
Waiting times​ (in minutes) of customers at a bank where all customers enter a single waiting line and a bank where customers wait in individual lines at three different teller windows are listed below. Find the coefficient of variation for each of the two sets of​ data, then compare the variation. Bank A​ (single line): 6.6 nbsp 6.6 nbsp 6.7 nbsp 6.8 nbsp 7.0 nbsp 7.3 nbsp 7.5 nbsp 7.7 nbsp 7.7 nbsp 7.8 Bank B​ (individual lines): 4.4 nbsp...
Waiting times​ (in minutes) of customers in a bank where all customers enter a single waiting...
Waiting times​ (in minutes) of customers in a bank where all customers enter a single waiting line and a bank where customers wait in individual lines at three different teller windows are listed below. Find the mean and median for each of the two​ samples, then compare the two sets of results. Single Line 6.5 6.6 6.7 6.8 7.0 7.1 7.5 7.6 7.6 7.6 Individual Lines 4.2 5.4 5.8 6.2 6.5 7.6 7.6 8.6 9.2 9.9 The mean waiting time...
Waiting times​ (in minutes) of customers at a bank where all customers enter a single waiting...
Waiting times​ (in minutes) of customers at a bank where all customers enter a single waiting line and a bank where customers wait in individual lines at three different teller windows are listed below. Find the coefficient of variation for each of the two sets of​ data, then compare the variation. Bank A​ (single line): 6.5 6.6 6.7 6.8 7.1 7.4 7.4 7.6 7.7 7.8 Bank B​ (individual lines): 4.2 5.4 5.8 6.2 6.7 7.7   7.8 8.6 9.3 9.9 The coefficient...
The values listed below are waiting times? (in minutes) of customers at two different banks. At...
The values listed below are waiting times? (in minutes) of customers at two different banks. At Bank? A, customers enter a single waiting line that feeds three teller windows. At Bank? B, customers may enter any one of three different lines that have formed at three teller windows. Answer the following questions. Bank A 6.36.3 6.66.6 6.76.7 6.86.8 7.17.1 7.37.3 7.47.4 7.87.8 7.87.8 7.87.8 Bank Upper BBank B 4.24.2 5.45.4 5.85.8 6.26.2 6.76.7 7.77.7 7.77.7 8.68.6 9.39.3 10.010.0 Construct aa...
The values listed below are waiting times​ (in minutes) of customers at two different banks. At...
The values listed below are waiting times​ (in minutes) of customers at two different banks. At Bank​ A, customers enter a single waiting line that feeds three teller windows. At Bank​ B, customers may enter any one of three different lines that have formed at three teller windows. Answer the following questions. Bank A 6.4 6.6 6.7 6.8 7.1 7.3 7.4 7.7 7.7 7.7 Bank B 4.1 5.3 5.9 6.2 6.8 7.6 7.6 8.4 9.4 10 Construct a 99​% confidence...
The values listed below are waiting times​ (in minutes) of customers at two different banks. At...
The values listed below are waiting times​ (in minutes) of customers at two different banks. At Bank​ A, customers enter a single waiting line that feeds three teller windows. At Bank​ B, customers may enter any one of three different lines that have formed at three teller windows. Answer the following questions. Bank A 6.46.4 6.66.6 6.76.7 6.86.8 7.17.1 7.27.2 7.57.5 7.87.8 7.87.8 7.87.8 Bank Upper BBank B 4.24.2 5.35.3 5.85.8 6.16.1 6.76.7 7.87.8 7.87.8 8.48.4 9.49.4 10.010.0 LOADING... Click...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT