Question

In: Math

1. The waiting times​ (in minutes) of a random sample of 21 people at a bank...

1. The waiting times​ (in minutes) of a random sample of 21 people at a bank have a sample standard deviation of 3.5 minutes. Construct a confidence interval for the population variance sigma squared and the population standard deviation sigma. Use a 99 % level of confidence. Assume the sample is from a normally distributed population. What is the confidence interval for the population variance sigma squared​?

2.You are given the sample mean and the population standard deviation. Use this information to construct the​ 90% and​ 95% confidence intervals for the population mean. Interpret the results and compare the widths of the confidence intervals. If​ convenient, use technology to construct the confidence intervals. A random sample of 55 home theater systems has a mean price of ​$113.00. Assume the population standard deviation is ​$15.20.

Solutions

Expert Solution

1)


Here s = 3.5 and n = 21
df = 21 - 1 = 20

α = 1 - 0.99 = 0.01
The critical values for α = 0.01 and df = 20 are Χ^2(1-α/2,n-1) = 7.4338 and Χ^2(α/2,n-1) = 39.9968

CI = (20*3.5^2/39.9968 , 20*3.5^2/7.4338)
CI = (6.1255 , 32.9576)

Here s = 3.5 and n = 21
df = 21 - 1 = 20

α = 1 - 0.99 = 0.01
The critical values for α = 0.01 and df = 20 are Χ^2(1-α/2,n-1) = 7.4338 and Χ^2(α/2,n-1) = 39.9968

CI = (sqrt(20*3.5^2/39.9968) , sqrt(20*3.5^2/7.4338))
CI = (2.475 , 5.7409)

2)

sample mean, xbar = 113
sample standard deviation, σ = 15.2
sample size, n = 55


Given CI level is 90%, hence α = 1 - 0.9 = 0.1
α/2 = 0.1/2 = 0.05, Zc = Z(α/2) = 1.64



CI = (113 - 1.64 * 15.2/sqrt(55) , 113 + 1.64 * 15.2/sqrt(55))
CI = (109.64 , 116.36)


sample mean, xbar = 113
sample standard deviation, σ = 15.2
sample size, n = 55


Given CI level is 95%, hence α = 1 - 0.95 = 0.05
α/2 = 0.05/2 = 0.025, Zc = Z(α/2) = 1.96



CI = (113 - 1.96 * 15.2/sqrt(55) , 113 + 1.96 * 15.2/sqrt(55))
CI = (108.98 , 117.02)


Related Solutions

The waiting times​ (in minutes) of a random sample of 20 people at a bank have...
The waiting times​ (in minutes) of a random sample of 20 people at a bank have a sample standard deviation of 3.4 minutes. Construct a confidence interval for the population variance sigma squared and the population standard deviation sigma. Use a 90 % level of confidence. Assume the sample is from a normally distributed population.
A random sample of 16 pharmacy customers showed the waiting times below (in minutes). Also, the...
A random sample of 16 pharmacy customers showed the waiting times below (in minutes). Also, the sample is from a normal population. Note that σ is unknown. 21 22 22 17 21 17 23 20 20 24 9 22 16 21 22 21 The sample mean is 19.875 and the sample standard deviation is 3.65. Which of the following represents the 80 percent confidence interval for µ? Select one: a. [13.75, 25.25] b. [18.65, 21.10] c. [19.55, 20.425] d. [18.8,...
A random sample of 16 pharmacy customers showed the waiting times below (in minutes). 26 16...
A random sample of 16 pharmacy customers showed the waiting times below (in minutes). 26 16 25 18 17 24 18 23 14 20 10 18 19 13 17 16 Click here for the Excel Data File Find a 90 percent confidence interval for μ, assuming that the sample is from a normal population. (Round your standard deviation answer to 4 decimal places and t-value to 3 decimal places. Round your answers to 3 decimal places.)    The 90% confidence...
Waiting times (in minutes) of customers at a bank where all customers enter a single waiting...
Waiting times (in minutes) of customers at a bank where all customers enter a single waiting line and a bank where customers wait in individual lines at three different teller windows are listed below. Find the coefficient of variation for each of the two sets of data, then compare the variation. Bank A (single line): 6.5 6.6 6.7 6.9 7.1 7.3 7.4 7.6 7.7 7.8 Bank B (individual lines): 4.4 5.4 5.7 6.2 6.7 7.7 7.8 8.4 9.4 9.9 The...
Waiting times​ (in minutes) of customers at a bank where all customers enter a single waiting...
Waiting times​ (in minutes) of customers at a bank where all customers enter a single waiting line and a bank where customers wait in individual lines at three different teller windows are listed below. Find the coefficient of variation for each of the two sets of​ data, then compare the variation. Bank A​ (single line): 6.6 nbsp 6.6 nbsp 6.7 nbsp 6.8 nbsp 7.0 nbsp 7.3 nbsp 7.5 nbsp 7.7 nbsp 7.7 nbsp 7.8 Bank B​ (individual lines): 4.4 nbsp...
Waiting times​ (in minutes) of customers in a bank where all customers enter a single waiting...
Waiting times​ (in minutes) of customers in a bank where all customers enter a single waiting line and a bank where customers wait in individual lines at three different teller windows are listed below. Find the mean and median for each of the two​ samples, then compare the two sets of results. Single Line 6.5 6.6 6.7 6.8 7.0 7.1 7.5 7.6 7.6 7.6 Individual Lines 4.2 5.4 5.8 6.2 6.5 7.6 7.6 8.6 9.2 9.9 The mean waiting time...
Waiting times​ (in minutes) of customers at a bank where all customers enter a single waiting...
Waiting times​ (in minutes) of customers at a bank where all customers enter a single waiting line and a bank where customers wait in individual lines at three different teller windows are listed below. Find the coefficient of variation for each of the two sets of​ data, then compare the variation. Bank A​ (single line): 6.5 6.6 6.7 6.8 7.1 7.4 7.4 7.6 7.7 7.8 Bank B​ (individual lines): 4.2 5.4 5.8 6.2 6.7 7.7   7.8 8.6 9.3 9.9 The coefficient...
In a random sample of 21 people, the mean commute time to work was 34.1 minutes...
In a random sample of 21 people, the mean commute time to work was 34.1 minutes and the standard deviation was 7.2 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 99​% confidence interval for the population mean μ. What is the margin of error of μ​? Interpret the results. The confidence interval for the population mean μ is __,__ ​(Round to one decimal place as​ needed.) The margin of error of μ is __,__...
14.Waiting times​ (in minutes) of customers at a bank where all customers enter a single waiting...
14.Waiting times​ (in minutes) of customers at a bank where all customers enter a single waiting line and a bank where customers wait in individual lines at three different teller windows are listed below. Find the coefficient of variation for each of the two sets of​ data, then compare the variation Bank A (single line) Bank B (individual lines) 6.4 4.3 6.5 5.5 6.6 5.9 6.8 6.3 7.1 6.7 7.4 7.6 7.4 7.8 7.7 8.4 7.7 9.4 7.8 9.7 The...
The mean and the standard deviation of the sample of 100 bank customer waiting times are...
The mean and the standard deviation of the sample of 100 bank customer waiting times are x⎯⎯x¯ = 5.33 and s = 2.008. Calculate a t-based 95 percent confidence interval for µ, the mean of all possible bank customer waiting times using the new system. Are we 95 percent confident that µ is less than 6 minutes?. (Choose the nearest degree of freedom for the given sample size. Round your answers to 3 decimal places.) The t-based 95 percent confidence...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT