Question

In: Statistics and Probability

A random sample of 16 pharmacy customers showed the waiting times below (in minutes). Also, the...

A random sample of 16 pharmacy customers showed the waiting times below (in minutes). Also, the sample is from a normal population. Note that σ is unknown. 21 22 22 17 21 17 23 20 20 24 9 22 16 21 22 21 The sample mean is 19.875 and the sample standard deviation is 3.65. Which of the following represents the 80 percent confidence interval for µ?

Select one:

a. [13.75, 25.25]

b. [18.65, 21.10]

c. [19.55, 20.425]

d. [18.8, 21.2]

Solutions

Expert Solution

Option b) is correct.

b. [18.65, 21.10]

We have given that,          
          
Sample mean =   19.875  
Sample standard deviation =   3.65
Sample size =   16  
Level of significance=   1-0.80=0.2  
Degree of freedom =   15  
          
t critical value is (by using t table)=   1.341
          
Confidence interval formula is   


=(18.65,21.10)      
          
          
          
Lower confidence limit=   18.65  
          
Upper confidence limit=   21.10  


Related Solutions

A random sample of 16 pharmacy customers showed the waiting times below (in minutes). 26 16...
A random sample of 16 pharmacy customers showed the waiting times below (in minutes). 26 16 25 18 17 24 18 23 14 20 10 18 19 13 17 16 Click here for the Excel Data File Find a 90 percent confidence interval for μ, assuming that the sample is from a normal population. (Round your standard deviation answer to 4 decimal places and t-value to 3 decimal places. Round your answers to 3 decimal places.)    The 90% confidence...
The waiting times​ (in minutes) of a random sample of 20 people at a bank have...
The waiting times​ (in minutes) of a random sample of 20 people at a bank have a sample standard deviation of 3.4 minutes. Construct a confidence interval for the population variance sigma squared and the population standard deviation sigma. Use a 90 % level of confidence. Assume the sample is from a normally distributed population.
1. The waiting times​ (in minutes) of a random sample of 21 people at a bank...
1. The waiting times​ (in minutes) of a random sample of 21 people at a bank have a sample standard deviation of 3.5 minutes. Construct a confidence interval for the population variance sigma squared and the population standard deviation sigma. Use a 99 % level of confidence. Assume the sample is from a normally distributed population. What is the confidence interval for the population variance sigma squared​? 2.You are given the sample mean and the population standard deviation. Use this...
The values listed below are waiting times? (in minutes) of customers at two different banks. At...
The values listed below are waiting times? (in minutes) of customers at two different banks. At Bank? A, customers enter a single waiting line that feeds three teller windows. At Bank? B, customers may enter any one of three different lines that have formed at three teller windows. Answer the following questions. Bank A 6.36.3 6.66.6 6.76.7 6.86.8 7.17.1 7.37.3 7.47.4 7.87.8 7.87.8 7.87.8 Bank Upper BBank B 4.24.2 5.45.4 5.85.8 6.26.2 6.76.7 7.77.7 7.77.7 8.68.6 9.39.3 10.010.0 Construct aa...
The values listed below are waiting times​ (in minutes) of customers at two different banks. At...
The values listed below are waiting times​ (in minutes) of customers at two different banks. At Bank​ A, customers enter a single waiting line that feeds three teller windows. At Bank​ B, customers may enter any one of three different lines that have formed at three teller windows. Answer the following questions. Bank A 6.4 6.6 6.7 6.8 7.1 7.3 7.4 7.7 7.7 7.7 Bank B 4.1 5.3 5.9 6.2 6.8 7.6 7.6 8.4 9.4 10 Construct a 99​% confidence...
The values listed below are waiting times​ (in minutes) of customers at two different banks. At...
The values listed below are waiting times​ (in minutes) of customers at two different banks. At Bank​ A, customers enter a single waiting line that feeds three teller windows. At Bank​ B, customers may enter any one of three different lines that have formed at three teller windows. Answer the following questions. Bank A 6.46.4 6.66.6 6.76.7 6.86.8 7.17.1 7.27.2 7.57.5 7.87.8 7.87.8 7.87.8 Bank Upper BBank B 4.24.2 5.35.3 5.85.8 6.16.1 6.76.7 7.87.8 7.87.8 8.48.4 9.49.4 10.010.0 LOADING... Click...
The values listed below are waiting times​ (in minutes) of customers at two different banks. At...
The values listed below are waiting times​ (in minutes) of customers at two different banks. At Bank​ A, customers enter a single waiting line that feeds three teller windows. At Bank​ B, customers may enter any one of three different lines that have formed at three teller windows. Answer the following questions. Bank A 6.5 6.6 6.7 6.8 7.1 7.3 7.6 7.9 7.9 7.9 Bank Upper B 4.3 5.3 5.9 6.2 6.8 7.8 7.8 8.4 9.2 10.0 Construct a 95%...
The values listed below are waiting times​ (in minutes) of customers at two different banks. At...
The values listed below are waiting times​ (in minutes) of customers at two different banks. At Bank​ A, customers enter a single waiting line that feeds three teller windows. At Bank​ B, customers may enter any one of three different lines that have formed at three teller windows. Answer the following questions. Bank A 6.5 6.6 6.7 6.8 7.1 7.2 7.5 7.9 7.9 7.9 Bank B 4.2 5.4 5.8 6.2 6.8 7.7 7.7 8.5 9.3 10.00 a) Using Chi-Square critical...
The values listed below are waiting times​ (in minutes) of customers at two different banks. At...
The values listed below are waiting times​ (in minutes) of customers at two different banks. At Bank​ A, customers enter a single waiting line that feeds three teller windows. At Bank​ B, customers may enter any one of three different lines that have formed at three teller windows. Answer the following questions. Bank A 6.46.4 6.66.6 6.76.7 6.86.8 7.17.1 7.37.3 7.47.4 7.97.9 7.97.9 7.97.9 Bank B 4.14.1 5.35.3 5.85.8 6.26.2 6.66.6 7.87.8 7.87.8 8.48.4 9.39.3 10.010.0 Construct a 99​% confidence...
Waiting times (in minutes) of customers at a bank where all customers enter a single waiting...
Waiting times (in minutes) of customers at a bank where all customers enter a single waiting line and a bank where customers wait in individual lines at three different teller windows are listed below. Find the coefficient of variation for each of the two sets of data, then compare the variation. Bank A (single line): 6.5 6.6 6.7 6.9 7.1 7.3 7.4 7.6 7.7 7.8 Bank B (individual lines): 4.4 5.4 5.7 6.2 6.7 7.7 7.8 8.4 9.4 9.9 The...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT