Question

In: Statistics and Probability

Suppose X1, X2, . . . , Xn is a random sample from N(μ, 16). Find...

Suppose X1, X2, . . . , Xn is a random sample from N(μ, 16). Find the maximum likelihood estimator of the 95th percentile.

Solutions

Expert Solution


Related Solutions

Let X1, X2, . . . , Xn be a random sample of size n from...
Let X1, X2, . . . , Xn be a random sample of size n from a Poisson distribution with unknown mean µ. It is desired to test the following hypotheses H0 : µ = µ0         versus     H1 : µ not equal to µ0 where µ0 > 0 is a given constant. Derive the likelihood ratio test statistic
Let X1, X2, ..., Xn be a random sample from Exp(?). Find the MVUE of the...
Let X1, X2, ..., Xn be a random sample from Exp(?). Find the MVUE of the median of this exponential distribution.
Suppose X1, . . . , Xn is a random sample from the Normal(μ, σ2) distribution,...
Suppose X1, . . . , Xn is a random sample from the Normal(μ, σ2) distribution, where μ is unknown but σ2 is known, and it is of interest to test H0: μ = μ0 versus H1: μ ̸= μ0 for some value μ0. The R code below plots the power curve of the test Reject H0 iff |√n(X ̄n − μ0)/σ| > zα/2 for user-selected values of μ0, n, σ, and α. For a sequence of values of μ,...
: Let X1, X2, . . . , Xn be a random sample from the normal...
: Let X1, X2, . . . , Xn be a random sample from the normal distribution N(µ, 25). To test the hypothesis H0 : µ = 40 against H1 : µne40, let us define the three critical regions: C1 = {x¯ : ¯x ≥ c1}, C2 = {x¯ : ¯x ≤ c2}, and C3 = {x¯ : |x¯ − 40| ≥ c3}. (a) If n = 12, find the values of c1, c2, c3 such that the size of...
. Let X1, X2, . . . , Xn be a random sample from a normal...
. Let X1, X2, . . . , Xn be a random sample from a normal population with mean zero but unknown variance σ 2 . (a) Find a minimum-variance unbiased estimator (MVUE) of σ 2 . Explain why this is a MVUE. (b) Find the distribution and the variance of the MVUE of σ 2 and prove the consistency of this estimator. (c) Give a formula of a 100(1 − α)% confidence interval for σ 2 constructed using the...
Suppose X1, X2, ..., Xn is a random sample from a Poisson distribution with unknown parameter...
Suppose X1, X2, ..., Xn is a random sample from a Poisson distribution with unknown parameter µ. a. What is the mean and variance of this distribution? b. Is X1 + 2X6 − X8 an estimator of µ? Is it a good estimator? Why or why not? c. Find the moment estimator and MLE of µ. d. Show the estimators in (c) are unbiased. e. Find the MSE of the estimators in (c). Given the frequency table below: X 0...
Let X1,X2, . . . , Xn be a random sample from the uniform distribution with...
Let X1,X2, . . . , Xn be a random sample from the uniform distribution with pdf f(x; θ1, θ2) = 1/(2θ2), θ1 − θ2 < x < θ1 + θ2, where −∞ < θ1 < ∞ and θ2 > 0, and the pdf is equal to zero elsewhere. (a) Show that Y1 = min(Xi) and Yn = max(Xi), the joint sufficient statistics for θ1 and θ2, are complete. (b) Find the MVUEs of θ1 and θ2.
Let X1,X2,...,Xn be a random sample from any distribution with mean μ and moment generating function...
Let X1,X2,...,Xn be a random sample from any distribution with mean μ and moment generating function M(t). Assume that M(t) is finite for some t > 0. Let c>μ be any constant. Let Yn = X1+X2+···+Xn. Show that P(Yn ≥ cn) ≤ exp[−n a(c)] where P(Yn ≥ cn) ≤ exp[−n a(c)] a(c) = sup[ct − ln M (t)]. t > 0
Suppose we have a random sample of n observations {x1, x2, x3,…xn}. Consider the following estimator...
Suppose we have a random sample of n observations {x1, x2, x3,…xn}. Consider the following estimator of µx, the population mean. Z = 12x1 + 14x2 + 18x3 +…+ 12n-1xn−1 + 12nxn Verify that for a finite sample size, Z is a biased estimator. Recall that Bias(Z) = E(Z) − µx. Write down a formula for Bias(Z) as a function of n and µx. Is Z asymptotically unbiased? Explain. Use the fact that for 0 < r < 1, limn→∞i=1nri...
Let X1, X2, . . . , Xn represent a random sample from a Rayleigh distribution...
Let X1, X2, . . . , Xn represent a random sample from a Rayleigh distribution with pdf f(x; θ) = (x/θ) * e^x^2/(2θ) for x > 0 (a) It can be shown that E(X2 P ) = 2θ. Use this fact to construct an unbiased estimator of θ based on n i=1 X2 i . (b) Estimate θ from the following n = 10 observations on vibratory stress of a turbine blade under specified conditions: 16.88 10.23 4.59 6.66...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT