(a) It can be shown that E(X2)=2θ.
E(X2)E(θ^)=2θ⇒E(2X2)=θ=E(2n∑Xi2)(∵θ^=2n∑Xi2)=2n∑E(Xi2)=2n∑2θ=2n2nθ=θ
Thus, E(θ^)=θ. That is, θ^ is an unbiased estimator of θ.
(b) Estimate θ from the following n=10 observations on vibratory stress of a turbine blade under specified conditions.
θ^=2n∑Xi2=2(10)((16.88)2+(10.23)2+(4.59)2+(6.66)2+(13.68)2+(14.23)2+(19.87)2+(9.40)2+(6.51)2+(10.95)2)=201490.106=74.50529
Thus, θ^=74.50529.