In: Finance
Fill in the table below for the following zero-coupon bonds, all of which have par values of $1,000. Use semi-annual periods.
Price Maturity (Years) Yield to Maturity
390 20 ?
610 20 ?
490 10 ?
? 10 9.90
? 10 6.90
390 ? 7.90
1)
| K = Nx2 | 
| Bond Price =∑ [(Semi Annual Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 | 
| k=1 | 
| K =20x2 | 
| 390 =∑ [(0*1000/200)/(1 + YTM/200)^k] + 1000/(1 + YTM/200)^20x2 | 
| k=1 | 
| YTM% = 4.76 | 
2)
| K = Nx2 | 
| Bond Price =∑ [(Semi Annual Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 | 
| k=1 | 
| K =20x2 | 
| 610 =∑ [(0*1000/200)/(1 + YTM/200)^k] + 1000/(1 + YTM/200)^20x2 | 
| k=1 | 
| YTM% = 2.49 | 
3)
| K = Nx2 | 
| Bond Price =∑ [(Semi Annual Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 | 
| k=1 | 
| K =10x2 | 
| 490 =∑ [(0*1000/200)/(1 + YTM/200)^k] + 1000/(1 + YTM/200)^10x2 | 
| k=1 | 
| YTM% = 7.26 | 
4)
| K = Nx2 | 
| Bond Price =∑ [(Semi Annual Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 | 
| k=1 | 
| K =10x2 | 
| Bond Price =∑ [(0*1000/200)/(1 + 9.9/200)^k] + 1000/(1 + 9.9/200)^10x2 | 
| k=1 | 
| Bond Price = 380.5 | 
5)
| K = Nx2 | 
| Bond Price =∑ [(Semi Annual Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 | 
| k=1 | 
| K =10x2 | 
| Bond Price =∑ [(0*1000/200)/(1 + 6.9/200)^k] + 1000/(1 + 6.9/200)^10x2 | 
| k=1 | 
| Bond Price = 507.45 | 
6)
| K = Nx2 | 
| Bond Price =∑ [(Semi Annual Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 | 
| k=1 | 
| K =Nx2 | 
| 390 =∑ [(0*1000/200)/(1 + 7.9/200)^k] + 1000/(1 + 7.9/200)^Nx2 | 
| k=1 | 
| N(in years) = 12.15 |