In: Finance
Fill in the table below for the following zero-coupon bonds, all of which have par values of $1,000. Use semi-annual periods. (Do not round intermediate calculations. Round your answers to 2 decimal places.)
Price | Maturity (years) | Yield to Maturity | |||||||
$ | 450 | 20 | % | ||||||
$ | 550 | 20 | % | ||||||
$ | 550 | 10 | % | ||||||
$ | 10 | 10.50 | % | ||||||
$ | 10 | 7.50 | % | ||||||
$ | 450 | 8.50 | % | ||||||
1)
Number of periods = 20 * 2 = 40
Price = FV / (1 + r)n
450 = 1000 / (1 + r)40
(1 + r)40 = 2.22222
1 + r = 1.0202
r = 0.0202 or 2.02%
Yield to maturity = 2.02% * 2 = 4.03% or 4.04%
2)
Number of periods = 20 * 2 = 40
Price = FV / (1 + r)n
550 = 1000 / (1 + r)40
(1 + r)40 = 1.818182
1 + r = 1.01506
r = 0.01506 or 1.506%
Yield to maturity = 1.506% * 2 = 3.01%
3)
Number of periods = 10 * 2 = 20
Price = FV / (1 + r)n
550 = 1000 / (1 + r)20
(1 + r)20 = 1.818182
1 + r = 1.030343
r = 0.030343 or 3.0343%
Yield to maturity = 3.0343% * 2 = 6.07%
4)
Number of periods = 10 * 2 = 20
Rate = 10.5% / 2 = 5.25%
Price = FV / (1 + r)n
Price = 1000 / (1 + 0.0525)20
Price = 1000 / 2.782544
Price = $359.38
5)
Number of periods = 10 * 2 = 20
Rate = 7.5% / 2 = 3.75%
Price = FV / (1 + r)n
Price = 1000 / (1 + 0.0375)20
Price = 1000 / 2.088152
Price = $478.89
6)
Rate = 8.5% / 2 = 4.25%
Price = FV / (1 + r)n
450 = 1000 / (1 + 0.0425)n
(1 + 0.0425)n = 2.222222
n LN 1.0425 = LN 2.222222
n 0.041622 = 0.798508
n = 19.1847
Number of years = 19.1847 / 2
Number of years = 9.59 years