In: Finance
Fill in the table below for the following zero-coupon bonds, all of which have par values of $1,000. Use semi-annual periods. (Do not round intermediate calculations. Round your answers to 2 decimal places.)
|
1)
K = N |
Bond Price =∑ [(Annual Coupon)/(1 + YTM)^k] + Par value/(1 + YTM)^N |
k=1 |
K =20 |
430 =∑ [(0*1000/100)/(1 + YTM/100)^k] + 1000/(1 + YTM/100)^20 |
k=1 |
YTM% = 4.31 |
2)
K = N |
Bond Price =∑ [(Annual Coupon)/(1 + YTM)^k] + Par value/(1 + YTM)^N |
k=1 |
K =20 |
530 =∑ [(0*1000/100)/(1 + YTM/100)^k] + 1000/(1 + YTM/100)^20 |
k=1 |
YTM% = 3.23 |
3)
K = N |
Bond Price =∑ [(Annual Coupon)/(1 + YTM)^k] + Par value/(1 + YTM)^N |
k=1 |
K =10 |
530 =∑ [(0*1000/100)/(1 + YTM/100)^k] + 1000/(1 + YTM/100)^10 |
k=1 |
YTM% = 6.55 |
4)
K = N |
Bond Price =∑ [(Annual Coupon)/(1 + YTM)^k] + Par value/(1 + YTM)^N |
k=1 |
K =10 |
Bond Price =∑ [(0*1000/100)/(1 + 10.3/100)^k] + 1000/(1 + 10.3/100)^10 |
k=1 |
Bond Price = 375.18 |
5)
K = N |
Bond Price =∑ [(Annual Coupon)/(1 + YTM)^k] + Par value/(1 + YTM)^N |
k=1 |
K =10 |
Bond Price =∑ [(0*1000/100)/(1 + 7.7/100)^k] + 1000/(1 + 7.7/100)^10 |
k=1 |
Bond Price = 476.26 |
6)
K = N |
Bond Price =∑ [(Annual Coupon)/(1 + YTM)^k] + Par value/(1 + YTM)^N |
k=1 |
K =N |
430 =∑ [(0*1000/100)/(1 + 8.3/100)^k] + 1000/(1 + 8.3/100)^N |
k=1 |
N(in years) = 10.58 |