In: Statistics and Probability
Fill in all the underlined spots on the spreadsheet with the data about Absorbance of Light for different Nitrate Levels. The goals are: 1) to compute the correlation and slope of the regression line by using the "SS formulas" and 2) to compute SSE, the sum of the squared "errors" (residuals).
| Data from Exercise 2.69 (p. 97) | ||||||||
| The absorbance of Light for Different Nitrate Levels | ||||||||
| y - that | ||||||||
| Nitrates x (mg/liter of water) | Absorbance y | x^2 values | y^2 values | x*y values | y hat (predicted absorbances) | residuals/errors | squared residuals | |
| 50 | 7 | _____ | _____ | _____ | _____ | _____ | _____ | |
| 50 | 7.5 | _____ | _____ | _____ | _____ | _____ | _____ | |
| 100 | 12.8 | _____ | _____ | _____ | _____ | _____ | _____ | |
| 200 | 24 | _____ | _____ | _____ | _____ | _____ | _____ | |
| 400 | 47 | _____ | _____ | _____ | _____ | _____ | _____ | |
| 800 | 93 | _____ | _____ | _____ | _____ | _____ | _____ | |
| 1200 | 138 | _____ | _____ | _____ | _____ | _____ | _____ | |
| 1600 | 183 | _____ | _____ | _____ | _____ | _____ | _____ | |
| 2000 | 230 | _____ | _____ | _____ | _____ | _____ | _____ | |
| 2000 | 226 | _____ | _____ | _____ | _____ | _____ | _____ | |
| Sums | 8400 | 968.3 | _____ | _____ | _____ | SSE | _____ | |
| Means | 840 | 96.83 | ||||||
| Std Devs | 802.7037644 | 90.95273559 | ||||||
| Correlation | 0.999939232 | |||||||
| Coefficient of Determination | 0.999878467 | SSxx | _____ | |||||
| SSyy | _____ | |||||||
| Slope | 0.113301086 | SSxy | _____ | |||||
| Intercept | 1.657087429 | |||||||
| Correlation | _____ | |||||||
| Regression Equation | y = 0.1133x + 1.6571 | Slope | _____ | |||||
Completed Table
|
Nitrates x (mg/liter of water) |
Absorbance y |
x^2 values |
y^2 values |
x*y values |
y hat (predicted absorbances) |
residuals/errors |
squared residuals |
|
|
50 |
7 |
2,500 |
49 |
350 |
7.32 |
-0.32 |
0.10 |
|
|
50 |
8 |
2,500 |
56 |
375 |
7.32 |
0.18 |
0.03 |
|
|
100 |
13 |
10,000 |
164 |
1,280 |
12.99 |
-0.19 |
0.04 |
|
|
200 |
24 |
40,000 |
576 |
4,800 |
24.32 |
-0.32 |
0.10 |
|
|
400 |
47 |
1,60,000 |
2,209 |
18,800 |
46.98 |
0.02 |
0.00 |
|
|
800 |
93 |
6,40,000 |
8,649 |
74,400 |
92.30 |
0.70 |
0.49 |
|
|
1,200 |
138 |
14,40,000 |
19,044 |
1,65,600 |
137.62 |
0.38 |
0.15 |
|
|
1,600 |
183 |
25,60,000 |
33,489 |
2,92,800 |
182.94 |
0.06 |
0.00 |
|
|
2,000 |
230 |
40,00,000 |
52,900 |
4,60,000 |
228.26 |
1.74 |
3.03 |
|
|
2,000 |
226 |
40,00,000 |
51,076 |
4,52,000 |
228.26 |
-2.26 |
5.10 |
|
|
Total |
8,400 |
968 |
128,55,000 |
1,68,212 |
14,70,405 |
9.05 |
SSE = ∑Squared residuals = 9.05
SSX = ∑X2 – (∑X)2/n = 128,55,000 – (8400)2/10 = 57,99,000
SSY = ∑Y2 – (∑Y)2/n = 168212 – (968)2/10 = 74,452
SSXY = ∑XY – (∑X*∑Y)/n = 1470405 – (8400*968)/10 = 6,57,033
SSReg = (SSXY)2/SSX = 74442.55
SSTotal = SSY
Correlation Coefficient = (SSReg / SSTotal)1/2 = 0.999939
Slope = SSXY/SSX = 6,57,033/57,99,000 = 0.113301