Question

In: Statistics and Probability

A plant pathologist used a spectrophotometer to measure the light absorbance of light (wavelength 500 nm)...

A plant pathologist used a spectrophotometer to measure the light absorbance of light (wavelength 500 nm) by a protein solution. The 26 measurements were as follows:

.121 .115 .135 .114 .099 .121 .107 .107 .103 .110 .106 .106 .098 .116 .148 .098 .121 .123 .124 .122 .106 .133 .114 .102 .123 .119

a. Calculate the sample mean, rounding appropriately.

b. Calculate the sample standard deviation, rounding appropriately.

c. Find the 5-number summary for this data. (6 points) d. Identify any outliers that exist for this data, using the method discussed in text.

Solutions

Expert Solution

Solution-

a) & b)

c)

d)

For outliers we calculated interval( Q1 -1.5*IQR , Q3+ 1.5*IQR)

(0.098 , 0.146)

The one observation is out of this interval.

The 0.148 is outlier in this data.


Related Solutions

A 0.50-mm-wide slit is illuminated by light of wavelength 500 nm.
A 0.50-mm-wide slit is illuminated by light of wavelength 500 nm. What is the width of the central maximum on a screen 2.0 m behind the slit in mm?  
A 0.50-mm-wide slit is illuminated by light of wavelength 500 nm.
A 0.50-mm-wide slit is illuminated by light of wavelength 500 nm. What is the width of the central maximum on a screen 2.0 m behind the slit?
When a plant is exposed to light at a wavelength of 680 nm, more oxygen is...
When a plant is exposed to light at a wavelength of 680 nm, more oxygen is generated than the plant is exposed to light at a wavelength of 700 nm. Why? And if you receive the light of 680nm and 700nm together, please explain if the oxygen production is more than receiving each wavelength separately.
Question: Light, with a wavelength of 500 nm in air, strikes directly on a double slit,...
Question: Light, with a wavelength of 500 nm in air, strikes directly on a double slit, spaced 440 micrometer apart. The resulting interference pattern is observed on a screen that is 2.0 meters away. Afterwards, the double slit apparatus is then submerged into oil, which has an index of refraction of 1.58.  Assume that the diffraction effects are negligible. a)Calculate the distance between the first two adjacent bright fringes on the screen, when set up in air. b)Determine the frequency of...
Light with a wavelength of 500 nm (nano means one billionth or ) is incident upon...
Light with a wavelength of 500 nm (nano means one billionth or ) is incident upon a double slit with a separation of m. The screen is located 3 m away from the double slit. At what distance from the center of the screen will the first bright fringe beyond the center-fringe appear?
What is the thinnest film that produces a strong reflection for green light with a wavelength of 500 nm?
A very thin oil film (n=1.25) floats on water (n=1.33). What is the thinnest film that produces a strong reflection for green light with a wavelength of 500 nm? d=________nm  
A 500 lines per mm diffraction grating is illuminated by light of wavelength 620 nm ....
A 500 lines per mm diffraction grating is illuminated by light of wavelength 620 nm . Part B What is the angle of each diffraction order? Enter your answers using two significant figures in ascending order separated by commas.
Blue light of wavelength 470 nm is used to illuminate a pair of narrow slits that...
Blue light of wavelength 470 nm is used to illuminate a pair of narrow slits that are 0.020 mm apart and 1.60 m from a screen. (a) What is the angular position of the second-order minimum (dark spot)? (b) What is the distance on the screen between the central maximum and the second-order minimum? (c) The reason there is a dark spot at this location on the screen is because light from one slit has to travel further than light...
In a Young's double-slit experiment the wavelength of light used is 462 nm (in vacuum), and...
In a Young's double-slit experiment the wavelength of light used is 462 nm (in vacuum), and the separation between the slits is 2.1 × 10-6 m. Determine the angle that locates (a) the dark fringe for which m = 0, (b) the bright fringe for which m = 1, (c) the dark fringe for which m = 1, and (d) the bright fringe for which m = 2.
In a Young's double-slit experiment the wavelength of light used is 469 nm (in vacuum), and...
In a Young's double-slit experiment the wavelength of light used is 469 nm (in vacuum), and the separation between the slits is 2.1 × 10-6 m. Determine the angle that locates (a) the dark fringe for which m = 0, (b) the bright fringe for which m = 1, (c) the dark fringe for which m = 1, and (d) the bright fringe for which m = 2.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT