In: Statistics and Probability
| 
 Date  | 
 Sales  | 
| 
 Jan-13  | 
 40,358  | 
| 
 Feb-13  | 
 45,002  | 
| 
 Mar-13  | 
 63,165  | 
| 
 Apr-13  | 
 57,479  | 
| 
 May-13  | 
 52,308  | 
| 
 Jun-13  | 
 60,062  | 
| 
 Jul-13  | 
 51,694  | 
| 
 Aug-13  | 
 54,469  | 
| 
 Sep-13  | 
 48,284  | 
| 
 Oct-13  | 
 45,239  | 
| 
 Nov-13  | 
 40,665  | 
| 
 Dec-13  | 
 47,968  | 
| 
 Jan-14  | 
 37,255  | 
| 
 Feb-14  | 
 38,521  | 
| 
 Mar-14  | 
 55,110  | 
| 
 Apr-14  | 
 51,389  | 
| 
 May-14  | 
 58,068  | 
| 
 Jun-14  | 
 64,028  | 
| 
 Jul-14  | 
 52,873  | 
| 
 Aug-14  | 
 62,584  | 
| 
 Sep-14  | 
 53,373  | 
| 
 Oct-14  | 
 52,060  | 
| 
 Nov-14  | 
 51,727  | 
| 
 Dec-14  | 
 51,455  | 
| 
 Jan-15  | 
 47,906  | 
| 
 Feb-15  | 
 53,570  | 
| 
 Mar-15  | 
 69,189  | 
| 
 Apr-15  | 
 64,346  | 
| 
 May-15  | 
 77,267  | 
| 
 Jun-15  | 
 75,787  | 
| 
 Jul-15  | 
 74,052  | 
| 
 Aug-15  | 
 79,756  | 
| 
 Sep-15  | 
 73,292  | 
| 
 Oct-15  | 
 77,207  | 
| 
 Nov-15  | 
 68,423  | 
| 
 Dec-15  | 
 67,274  | 
| 
 Jan-16  | 
 65,711  | 
| 
 Feb-16  | 
 68,005  | 
| 
 Mar-16  | 
 78,029  | 
| 
 Apr-16  | 
 92,764  | 
| 
 May-16  | 
 97,175  | 
| 
 Jun-16  | 
 86,255  | 
| 
 Jul-16  | 
 90,496  | 
| 
 Aug-16  | 
 87,602  | 
| 
 Sep-16  | 
 83,577  | 
| 
 Oct-16  | 
 92,610  | 
| 
 Nov-16  | 
 73,949  | 
| 
 Dec-16  | 
 77,711  | 
Page 277
(c5p12)
It seems that the sales are the lowest in November, December, January, and February than in other months. Therefore, I agree with this statement.
The trend model given with this equation is 45518.48+927.7418*t-15281.1*x2-12738.8*x2-13645*x11-12158.7*x12. They support Ronnie’s observations because
| 
 Jan-2017  | 
 87327  | 
| 
 Feb-2017  | 
 84772  | 
| 
 Mar-2017  | 
 112499  | 
| 
 Apr-2017  | 
 102633  | 
| 
 May-2017  | 
 112996  | 
| 
 Jun-2017  | 
 119807  | 
Solution:
The time-series plot is:

Yes, sales data for the four-year period indicates that sales are slowest in November, December, January, and February than in other months.
The output is:
| Regression Statistics | ||||||||
| Multiple R | 0.93343 | |||||||
| R Square | 0.871291 | |||||||
| Adjusted R Square | 0.822079 | |||||||
| Standard Error | 6688.479 | |||||||
| Observations | 48 | |||||||
| ANOVA | ||||||||
| df | SS | MS | F | Significance F | ||||
| Regression | 13 | 1.03E+10 | 7.92E+08 | 17.70482 | 1.88E-11 | |||
| Residual | 34 | 1.52E+09 | 44735747 | |||||
| Total | 47 | 1.18E+10 | ||||||
| Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
| Intercept | 45518.48 | 2108.71 | 21.58594 | 2E-21 | 41233.07 | 49803.9 | 41233.07 | 49803.9 | 
| t | 924.7418 | 71.26704 | 12.97573 | 1E-14 | 779.9097 | 1069.574 | 779.9097 | 1069.574 | 
| x1 | -15281.1 | 3568.693 | -4.28198 | 0.000143 | -22533.5 | -8028.62 | -22533.5 | -8028.62 | 
| x2 | -12738.8 | 3561.57 | -3.57674 | 0.001069 | -19976.8 | -5500.84 | -19976.8 | -5500.84 | 
| x3 | 0 | 0 | 65535 | #NUM! | 0 | 0 | 0 | 0 | 
| x4 | 0 | 0 | 65535 | #NUM! | 0 | 0 | 0 | 0 | 
| x5 | 0 | 0 | 65535 | #NUM! | 0 | 0 | 0 | 0 | 
| x6 | 0 | 0 | 65535 | #NUM! | 0 | 0 | 0 | 0 | 
| x7 | 0 | 0 | 65535 | #NUM! | 0 | 0 | 0 | 0 | 
| x8 | 0 | 0 | 65535 | #NUM! | 0 | 0 | 0 | 0 | 
| x9 | 0 | 0 | 65535 | #NUM! | 0 | 0 | 0 | 0 | 
| x10 | 0 | 0 | 65535 | #NUM! | 0 | 0 | 0 | 0 | 
| x11 | -13645 | 3561.57 | -3.83117 | #NUM! | -20883 | -6407.01 | -20883 | -6407.01 | 
| x12 | -12158.7 | 3568.693 | -3.40706 | 0.001703 | -19411.2 | -4906.28 | -19411.2 | -4906.28 | 
The trend model that includes a time index and dummy variables is:
Sales = 45518.48 + 924.7418*t - 15281.1*x2 - 12738.8*x2 - 13645*x11 - 12158.7*x12
These results support Ronnie’s observations because the four-year period indicates that sales are slowest in November, December, January, and February than in other months.
The output is:
| Regression Statistics | ||||||||
| Multiple R | 0.952126 | |||||||
| R Square | 0.906544 | |||||||
| Adjusted R Square | 0.866896 | |||||||
| Standard Error | 5785.089 | |||||||
| Observations | 48 | |||||||
| ANOVA | ||||||||
| df | SS | MS | F | Significance F | ||||
| Regression | 14 | 1.07E+10 | 7.65E+08 | 22.86478 | 5.18E-13 | |||
| Residual | 33 | 1.1E+09 | 33467250 | |||||
| Total | 47 | 1.18E+10 | ||||||
| Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
| Intercept | 53731.77 | 2724.102 | 19.72459 | 7.81E-20 | 48189.55 | 59274 | 48189.55 | 59274 | 
| t | -45.0203 | 246.7313 | -0.18247 | 0.856333 | -546.999 | 456.9583 | -546.999 | 456.9583 | 
| t² | 19.79106 | 4.875659 | 4.059156 | 0.000284 | 9.87146 | 29.71067 | 9.87146 | 29.71067 | 
| x1 | -15775.9 | 3089.087 | -5.10696 | 1.35E-05 | -22060.6 | -9491.06 | -22060.6 | -9491.06 | 
| x2 | -13035.7 | 3081.389 | -4.23046 | 0.000174 | -19304.8 | -6766.55 | -19304.8 | -6766.55 | 
| x3 | 0 | 0 | 65535 | #NUM! | 0 | 0 | 0 | 0 | 
| x4 | 0 | 0 | 65535 | #NUM! | 0 | 0 | 0 | 0 | 
| x5 | 0 | 0 | 65535 | #NUM! | 0 | 0 | 0 | 0 | 
| x6 | 0 | 0 | 65535 | #NUM! | 0 | 0 | 0 | 0 | 
| x7 | 0 | 0 | 65535 | #NUM! | 0 | 0 | 0 | 0 | 
| x8 | 0 | 0 | 65535 | #NUM! | 0 | 0 | 0 | 0 | 
| x9 | 0 | 0 | 65535 | #NUM! | 0 | 0 | 0 | 0 | 
| x10 | 0 | 0 | 65535 | #NUM! | 0 | 0 | 0 | 0 | 
| x11 | -13941.9 | 3081.389 | -4.52454 | #NUM! | -20211 | -7672.73 | -20211 | -7672.73 | 
| x12 | -12653.5 | 3089.087 | -4.0962 | 0.000256 | -18938.3 | -6368.72 | -18938.3 | -6368.72 | 
There is no evidence of the increase in sales growth.
| Actual | Forecasted | Error | |
| 87327 | 83268.27 | 4058.732 | 5% | 
| 84772 | 87922.73 | 3150.732 | 4% | 
| 112499 | 102912.3 | 9586.707 | 9% | 
| 102633 | 104905.8 | 2272.752 | 2% | 
| 112996 | 106938.8 | 6057.206 | 5% | 
| 119807 | 109011.4 | 10795.58 | 9% | 
| MAPE | 6% |