In: Statistics and Probability
70% RH
22.5, 24.2, 24.5, 29.2, 27.5, 24.5, 26.5, 23.5, 25.5, 27.0, 23.5, 23.5, 25.5, 31.0, 24.0, 27.8, 23.5
20% RH
19.0, 18.0, 14.5, 18.5, 19.0, 19.5, 21.3, 18.3, 18.0, 18.5, 18.8, 17.9, 21.2, 20.6, 17.1, 19.5
| 70%rh | ||
| Sample Variance, | s₁² = | 5.4636 | 
| Sample size, | n₁ = | 17 | 
| 20%rh | ||
| Sample Standard deviation, | s₂² = | 2.6756 | 
| Sample size, | n₂ = | 16 | 
| α = | 0.05 | 
Hₒ : σ₁² = σ₂²  
H₁ : σ₁² ≠ σ₂²  
Test statistic:  
F = s₁² / s₂² =    2.0420
Degree of freedom:  
df₁ = n₁-1 =    16
df₂ = n₂-1 =    15
P-value :  
P-value = 2*F.DIST.RT(2.042, 16, 15) =   
0.1746
p value > 0.05, do not reject Ho
so variances are equal
..................
2 mean t test with equal variances
Ho :   µ1 - µ2 =   0  
           
   
Ha :   µ1-µ2 ╪   0  
           
   
          
           
   
Level of Significance ,    α =   
0.05          
       
          
           
   
mean of sample 1,    x̅1=   25.51  
           
   
standard deviation of sample 1,   s1 =   
2.34          
       
size of sample 1,    n1=   17  
           
   
          
           
   
mean of sample 2,    x̅2=   18.73  
           
   
standard deviation of sample 2,   s2 =   
1.64          
       
size of sample 2,    n2=   16  
           
   
          
           
   
difference in sample means =    x̅1-x̅2 =   
25.5118   -   18.7   =  
6.78  
          
           
   
pooled std dev , Sp=   √([(n1 - 1)s1² + (n2 -
1)s2²]/(n1+n2-2)) =    2.0284  
           
   
std error , SE =    Sp*√(1/n1+1/n2) =   
0.7065          
       
          
           
   
t-statistic = ((x̅1-x̅2)-µd)/SE = (  
6.7805   -   0   ) /   
0.71   =   9.597
          
           
   
Degree of freedom, DF=   n1+n2-2 =   
31          
       
  
p-value =        0.000000  
(excel function: =T.DIST.2T(t stat,df) )  
       
   
Conclusion:     p-value <α , Reject null
hypothesis