In: Statistics and Probability
Average monthly concentration (ppb) |
Time |
Temperature |
RH (%) |
Atmospheric pressure (mb) |
10.3 |
1 |
14 |
31 |
980 |
9.9 |
2 |
17 |
42 |
1010 |
9.4 |
3 |
21 |
52 |
1003 |
10.6 |
4 |
28 |
63 |
1020 |
10.1 |
5 |
33 |
74 |
990 |
14.3 |
6 |
35 |
88 |
1050 |
13.3 |
7 |
36 |
84 |
1070 |
8.2 |
8 |
35 |
86 |
1025 |
8.8 |
9 |
32 |
90 |
995 |
9.1 |
10 |
27 |
81 |
1005 |
10 |
11 |
23 |
62 |
1080 |
10.4 |
12 |
18 |
42 |
1056 |
You can do it in excel using Data Tab --> Data Analysis and then select Regression.
Below is its output
SUMMARY OUTPUT | ||||||||
Regression Statistics | ||||||||
Multiple R | 0.755476222 | |||||||
R Square | 0.570744322 | |||||||
Adjusted R Square | 0.325455363 | |||||||
Standard Error | 1.449166071 | |||||||
Observations | 12 | |||||||
ANOVA | ||||||||
df | SS | MS | F | Significance F | ||||
Regression | 4 | 19.54609055 | 4.886522638 | 2.32682435 | 0.155339031 | |||
Residual | 7 | 14.70057611 | 2.100082302 | |||||
Total | 11 | 34.24666667 | ||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | -34.60977009 | 17.83193947 | -1.940886472 | 0.093412987 | -76.77560661 | 7.556066438 | -76.77560661 | 7.556066438 |
Time | -0.328712315 | 0.193847552 | -1.695725898 | 0.133757238 | -0.787088939 | 0.129664309 | -0.787088939 | 0.129664309 |
Temperature | 0.051399637 | 0.212848653 | 0.241484437 | 0.816100937 | -0.45190745 | 0.554706725 | -0.45190745 | 0.554706725 |
RH (%) | 0.006064122 | 0.085149601 | 0.071217271 | 0.945216837 | -0.19528269 | 0.207410934 | -0.19528269 | 0.207410934 |
Atmospheric Pressure |
0.044296592 | 0.018176146 | 2.437072828 | 0.044951584 | 0.001316836 | 0.087276349 | 0.001316836 | 0.087276349 |
Thus the equation Average monthly concentration = -0.328*Time + 0.0514*Temperature + 0.0061*RH% + 0.0443*Atmospheric_pressure -34.601.
This regression can explain 32.54% of variation in Average monthly concentration. (Adjusted R-square)
Please upvote if it was helpful :)