Question

In: Mechanical Engineering

3) A vortex tube receives 0.3 m3/min of air at 600 kPa and 300 K. The...

3) A vortex tube receives 0.3 m3/min of air at 600 kPa and 300 K. The discharge from the cold end of the tube is 0.6 kg/min at 245 K and 100 kPa. The discharge from the hot end is at 325 K and 100 kPa. Determine the irreversibility.

Solutions

Expert Solution


Related Solutions

A 1.0 m3 tank, initially filled with 103. kPa, 300. K air, is connected to a...
A 1.0 m3 tank, initially filled with 103. kPa, 300. K air, is connected to a source of air at 1,500. kPa, 300. K. The tank slowly fills until it is at the same pressure. If the temperature is maintained at 300. K throughout this transient process, what is the total heat transfer required? (You can assume air is an ideal gas.)
Air enters the compressor at 100 kPa, 300 K and is compressed to 1000 kPa. The...
Air enters the compressor at 100 kPa, 300 K and is compressed to 1000 kPa. The temperature at the inlet to the first turbine stage is 1400 K. The expansion takes place isentropically in two stages, with reheat to 1400 K between the stages at a constant pressure of 300 kPa. A regenerator having an effectiveness of 100% is also incorporated into the cycle. The turbine and the compressor each have am isentropic efficiency of 80%. Determine the following: (a.)...
Assignment 3 Question: A 1 m3 rigid tank has propane at 100 kPa and 300 K....
Assignment 3 Question: A 1 m3 rigid tank has propane at 100 kPa and 300 K. The tank is connected to another 0.5 m3 rigid tank which has propane at 250 kPa and 400 K by a ball valve. The valve is opened and both tanks come to a uniform state at 325 K. 1- State all assumptions you need to solve the problem. 2- Calculate the final pressure of propane in both tanks? 3- Calculate the mass of propane...
A 0.2 m^3 piston/cylinder contains air at 400 K and 400 kPa and receives heat from...
A 0.2 m^3 piston/cylinder contains air at 400 K and 400 kPa and receives heat from a constant temperature heat source at 1300 K. The piston expands at constant pressure to a volume of 0.6 m^3. Determine the change of availability of the system. Assume To= 300K and Po = 100kPa. Answer should be 210.3 kJ.
Air enters the compressor of an ideal air-standard Brayton cycle at 100 kPa, 300 K, with...
Air enters the compressor of an ideal air-standard Brayton cycle at 100 kPa, 300 K, with a volumetric flow rate of 5 m3/s. The turbine inlet temperature is 1800 K. For a compressor pressure ratio of 9, determine: (a) the percent thermal efficiency of the cycle. (b) the back work ratio. (c) the net power developed, in kW.
Thermodynamics A 1 m3 rigid tank has propane at 100 kPa and 300 K. The tank...
Thermodynamics A 1 m3 rigid tank has propane at 100 kPa and 300 K. The tank is connected to another 0.5 m3 rigid tank which has propane at 250 kPa and 400 K by a ball valve. The valve is opened and both tanks come to a uniform state at 325 K. 1-      State all assumptions you need to solve the problem. 2-      Calculate the final pressure of propane in both tanks? 3-      Calculate the mass of propane before and after opening the...
Air enters the compressor of an ideal cold air-standard Brayton cycle at 100 kPa, 300 K,...
Air enters the compressor of an ideal cold air-standard Brayton cycle at 100 kPa, 300 K, with a mass flow rate of 6 kg/s. The compressor pressure ratio is 10, and the turbine inlet temperature is 1400 K. For k = 1.4 and Cp = 1.005 kJ/kg, calculate: (a) the percent thermal efficiency of the cycle. (b) the back work ratio. (c) the net power developed, in kW
Air is compressed from an inlet condition of 100 kPa, 300 K to an exit pressure...
Air is compressed from an inlet condition of 100 kPa, 300 K to an exit pressure of 1000 kPa by an internally reversible compressor. Determine the compressor power per unit mass flow rate if the device is (a) isentropic, (b) polytropic with n =1.3, (c) isothermal.
Air is compressed from an inlet condition of 100 kPa, 300 K to an exit pressure...
Air is compressed from an inlet condition of 100 kPa, 300 K to an exit pressure of 1000 kPa by an internally reversible compressor. Determine the compressor power per unit mass flow rate if the device is (a) isentropic, (b) polytropic with n =1.3, (c) isothermal.
9.43 An ideal air-standard state with compressor inlet conditions of 300 K and 100 kPa and...
9.43 An ideal air-standard state with compressor inlet conditions of 300 K and 100 kPa and a fixed turbine inlet temperature of 1700 K. For the cycle, Plot the net work developed per unit mass flowing, in kJ/kg, and the thermal efficiency, each versus compressor pressure ratio ranging from 2 to 50. I need the IT Thermodynamics software code, or at least I need to know how to set the code up. Also, please note that this is an air-standard...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT