Question

In: Chemistry

A 1.0 m3 tank, initially filled with 103. kPa, 300. K air, is connected to a...

A 1.0 m3 tank, initially filled with 103. kPa, 300. K air, is connected to a source of air at 1,500. kPa, 300. K. The tank slowly fills until it is at the same pressure. If the temperature is maintained at 300. K throughout this transient process, what is the total heat transfer required? (You can assume air is an ideal gas.)

Solutions

Expert Solution

Answer – Given, volume, V = 1.0 m3, P1 = 103.0 kPa, P2 = 1500.0 kPa , T = 300 K

And we need to calculate the total heat transfer required

From the give data we can calculate the work using the formula

W = -deltan*RT*lnP1/P2)

We need to calculate moles first

We need to volume in L

So, 1.0 m3 = 1000 dm3 = 1000 L

P in atm –

1 kPa = 0.00987 atm

So, 103 kPa = ?

= 1.02 atm

Now using the Ideal gas law

n = PV/RT

= 1.02 atm*1000 L / 0.0821* 300 K

= 41.4 moles

Moles of air –

P = 1500 kPa = 14.78 atm

n = 14.8 atm*1000 L / 0.0821* 300 K

= 600.9 moles

Deltan =600.9 -41.4 = 559.5 moles

So work

w = - 559.5 * 8.314 J/mol.K * 300 K * ln 103/1500

     = 1.246*104 J

We are given constant temperature, so ΔE = 0

Then w = -q

So, heat , q = -w

                   = - 1.246*104 J

The total heat transfer required is - 1.246*104 J


Related Solutions

Thermodynamics A 1 m3 rigid tank has propane at 100 kPa and 300 K. The tank...
Thermodynamics A 1 m3 rigid tank has propane at 100 kPa and 300 K. The tank is connected to another 0.5 m3 rigid tank which has propane at 250 kPa and 400 K by a ball valve. The valve is opened and both tanks come to a uniform state at 325 K. 1-      State all assumptions you need to solve the problem. 2-      Calculate the final pressure of propane in both tanks? 3-      Calculate the mass of propane before and after opening the...
An insulated rigid tank having a 0.2 m3 volume initially contains air at 400 kPa and...
An insulated rigid tank having a 0.2 m3 volume initially contains air at 400 kPa and 313 K. The amount of paddle-wheel work done on the system is 200 kJ. Calculate the nearest value of entropy change a. 0.66 kJ/K b. 0.88 kJ/K c. None d. 0.44 kJ/K e. 0.33 kJ/K
Assignment 3 Question: A 1 m3 rigid tank has propane at 100 kPa and 300 K....
Assignment 3 Question: A 1 m3 rigid tank has propane at 100 kPa and 300 K. The tank is connected to another 0.5 m3 rigid tank which has propane at 250 kPa and 400 K by a ball valve. The valve is opened and both tanks come to a uniform state at 325 K. 1- State all assumptions you need to solve the problem. 2- Calculate the final pressure of propane in both tanks? 3- Calculate the mass of propane...
3) A vortex tube receives 0.3 m3/min of air at 600 kPa and 300 K. The...
3) A vortex tube receives 0.3 m3/min of air at 600 kPa and 300 K. The discharge from the cold end of the tube is 0.6 kg/min at 245 K and 100 kPa. The discharge from the hot end is at 325 K and 100 kPa. Determine the irreversibility.
Nitrogen gas is contained in a rigid 1-m3 tank, initially at 5 bar, 300 K. Heat...
Nitrogen gas is contained in a rigid 1-m3 tank, initially at 5 bar, 300 K. Heat transfer to the contents of the tank occurs until the temperature has increased to 400 K. During the process, a pressure-relief valve allows nitrogen to escape, maintaining constant pressure in the tank. Neglecting kinetic and potential energy effects, and using the ideal gas model with constant specific heats evaluated at 350 K, determine (a) the mass of nitrogen that escapes, in kg, and (b)...
An adiabatic tank, 0.5 m3, is initially evacuated and charged with steam at 500 kPa and...
An adiabatic tank, 0.5 m3, is initially evacuated and charged with steam at 500 kPa and 300 C. The final tank pressure is 500 kPa. Determine the final temperature and the entropy production.
Problem 4.084 SI A rigid copper tank, initially containing 1.5 m3 of air at 295 K,...
Problem 4.084 SI A rigid copper tank, initially containing 1.5 m3 of air at 295 K, 4 bar, is connected by a valve to a large supply line carrying air at 295 K, 15 bar. The valve is opened only as long as required to fill the tank with air to a pressure of 15 bar. Finally, the air in the tank is at 320 K. The copper tank, which has a mass of 20 kg, is at the same...
Air enters the compressor at 100 kPa, 300 K and is compressed to 1000 kPa. The...
Air enters the compressor at 100 kPa, 300 K and is compressed to 1000 kPa. The temperature at the inlet to the first turbine stage is 1400 K. The expansion takes place isentropically in two stages, with reheat to 1400 K between the stages at a constant pressure of 300 kPa. A regenerator having an effectiveness of 100% is also incorporated into the cycle. The turbine and the compressor each have am isentropic efficiency of 80%. Determine the following: (a.)...
One kg de air initially at 300 K and 100 kPa undergoes a quasi-equilibrium constant-pressure process...
One kg de air initially at 300 K and 100 kPa undergoes a quasi-equilibrium constant-pressure process in a piston-cylinder assembly. If the final temperature is 450 K, determine the work and heat interactions and the change in the enthalpy.
4.65 A system consisting of 5 kg of air is initially at 300 kPa and 20...
4.65 A system consisting of 5 kg of air is initially at 300 kPa and 20 degrees C. Determine the heat transfer necessary to (a) increase the volume by a factor of two at constant pressure, (b) increase the pressure by a factor of two at constant volume, (c) increase the pressure by a factor of two at constant temperature, and (d) increase the absolute temperature by a factor of 2 at constant pressure.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT