Question

In: Mechanical Engineering

determine the speed of sound in refrigerant-134a at 0.1 MPa and 60°C

determine the speed of sound in refrigerant-134a at 0.1 MPa and 60°C

Solutions

Expert Solution

Assuming R-134a to be an ideal gas, we can determine the gas constant using Table A-1.

Now, given;

Speed of sound is given as;


Related Solutions

Refrigerant 134a enters a well-insulated nozzle at 14 bar, 60°C, with a velocity of 37 m/s...
Refrigerant 134a enters a well-insulated nozzle at 14 bar, 60°C, with a velocity of 37 m/s and exits at 1.2 bar with a velocity of 460 m/s. For steady-state operation, and neglecting potential energy effects, determine the exit temperature, in °C.
A commercial refrigerant that uses R-134a as the refrigerant is used for cooling, to keep the...
A commercial refrigerant that uses R-134a as the refrigerant is used for cooling, to keep the condition at -35o, throws heat into the cooling water that has been in the condenser at 18oC and 0.25kg / s and has been formed since 26o. The refrigerant enters the condenser at 1.2 MPa and 50o ° and exits by cooling 5o C more than the saturation temperature at the same pressure. If the compressor consumes 3.3 kW (Answer: 0.0498 kg / s,...
How do you determine the properties of steam or refrigerant 134a from the properties if you...
How do you determine the properties of steam or refrigerant 134a from the properties if you know only specific internal energy and specific volume (or specific enthalpy and specific entropy) at the thermodynamic state?
refrigerant 134a enters the evaporator of a refrigeration system operating at steady state at -12°C and...
refrigerant 134a enters the evaporator of a refrigeration system operating at steady state at -12°C and a quality of 20% at a velocity of 7 m/s. At the exit, the refrigerant is a saturated vapor at -12°C. The evaporator flow channel has constant diameter of 1.7cm. Determine the mass flow rate of the refrigerant in kg/s Determine the velocity at the exit in m/s
Determine the volume, in ft3, of 2 lb of a two-phase liquid–vapor mixture of Refrigerant 134A...
Determine the volume, in ft3, of 2 lb of a two-phase liquid–vapor mixture of Refrigerant 134A at 44°F with a quality of 40%.
Refrigerant 134a enters an air conditioner compressor at 4 bar, 20°C, and is compressed at steady...
Refrigerant 134a enters an air conditioner compressor at 4 bar, 20°C, and is compressed at steady state to 12 bar, 80°C. The volumetric flow rate of the refrigerant entering is 7.5 m3/min. The work input to the compressor is 112.5 kJ per kg of refrigerant flowing. Neglecting kinetic and potential energy effects, determine the magnitude of the heat transfer rate from the compressor, in kW.
Refrigerant 134a enters a horizontal pipe operating at steady state at 40°C, 300 kPa, and a...
Refrigerant 134a enters a horizontal pipe operating at steady state at 40°C, 300 kPa, and a velocity of 25 m/s. At the exit, the temperature is 70°C and the pressure is 240 kPa. The pipe diameter is 0.01 m. Determine: (a) the mass flow rate of the refrigerant, in kg/s, (b) the velocity at the exit, in m/s, and (c) the rate of heat transfer between the pipe and its surroundings, in kW.
A piston–cylinder device contains 0.85 kg of refrigerant-134a at -10°C. The piston that is free to...
A piston–cylinder device contains 0.85 kg of refrigerant-134a at -10°C. The piston that is free to move has a mass of 12 kg and a diameter of 25 cm. The local atmospheric pressure is 88 kPa. Now, heat is transferred to refrigerant-134a until the temperature is 10°C. Determine (a) the final pressure, (b) the change in the volume of the cylinder, and (c) the change in the enthalpy of the refrigerant-134a.
Consider   a   vapour   compression   refrigeration   cycle   that   uses   R-134a   as   refrigerant.   The   R-134a   enter
Consider   a   vapour   compression   refrigeration   cycle   that   uses   R-134a   as   refrigerant.   The   R-134a   enters   the   compressor   as   a   saturated   vapour   at   200   kPa,   and   exits   the   condenser   as   a   saturated   liquid   at   900   kPa.   The   rate   of   refrigeration   of   the   cycle   is   to   be   6.0   tons   of   refrigeration   (1   ton   of   refrigeration   =   3.517   kW).   The   compressor   isentropic   efficiency   is   80%.   Determine:   a) The   temperature   of   evaporation   and   condensation   of   the   refrigerant;   b) Mass   flow   of   the   refrigerant   R-134a,   in  ...
One kilogram of Refrigerant 134a vapor initially at 2 bar and 20°C fills a rigid vessel....
One kilogram of Refrigerant 134a vapor initially at 2 bar and 20°C fills a rigid vessel. The vapor is cooled until the temperature becomes -24°C. There is no work during the process. Let To = 20°C, po = 0.1 MPa and ignore the effects of motion and gravity. 2. For the refrigerant, determine the change in exergy, in kJ. Note: for part 1: q=-98.086kj please find part two- the change in exergy in kj
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT