In: Statistics and Probability
Consider the monthly sales data for the following
questions.
Month | Sales |
---|---|
1 | 34400 |
2 | 29700 |
3 | 29000 |
4 | 16600 |
5 | 20500 |
6 | 20300 |
7 | 22500 |
8 | 17400 |
9 | 19600 |
10 | 16400 |
11 | 17700 |
12 | 18100 |
13 | 15300 |
14 | 17600 |
15 | 14200 |
16 | 15800 |
17 | 14500 |
18 | 13300 |
Step 1 of 6: Fit a linear trend model to the data. What is the R2 value for the linear model? Enter 4 decimal places
Step 2 of 6: How well does the linear trend fit the observed time series data?
Step 3 of 6: What is the linear trend equation? y = [ intercept ] + [ slope ] t (Round to the nearest WHOLE number)
Step 4 of 6: Use the forecasting formula to forecast month t =
19.
Use the intercept and slope rounded to the nearest whole number to
calculate your answer.
Round your answer to the nearest whole number. DO NOT ENTER COMMAS
OR DECIMALS.
Step 5 of 6: Use the forecasting formula to calculate the fits (forecasts) for periods 1 through 18. Then calculate the MAD.Enter the value of the MAD rounded to the nearest whole number. DO NOT ENTER COMMAS OR DECIMALS.
Step 6 of 6: Use the forecasting formula to calculate the fits (forecasts) for periods 1 through 18. Then calculate the MAPE.Enter the value of the MAPE rounded to two decimals, for example, 0.2031 would be 0.20 and 0.0482 would be 0.05.
CAN YOU PLEASE EXPLAIN HOW TO DO THIS THROUGH EXCEL WITH STEPS? Any help would be greatly appreciated!
Cheers!
1)
ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
total sum | 171 | 352900 | 484.5 | 580849444.4 | -435050.00 |
mean | 9.50 | 19605.56 | SSxx | SSyy | SSxy |
SSE= (SSxx * SSyy - SS²xy)/SSxx =
190202380.461
std error ,Se = √(SSE/(n-2)) =
3447.847
correlation coefficient , r = Sxy/√(Sx.Sy)
= -0.8201
R² = (Sxy)²/(Sx.Sy) =
0.6725
2)
correlation coefficient , r = Sxy/√(Sx.Sy) = -0.8201
Hence we can say that model is moderate and negative.
3)
sample size , n = 18
here, x̅ = Σx / n= 9.50 ,
ȳ = Σy/n =
19605.56
SSxx = Σ(x-x̅)² = 484.5000
SSxy= Σ(x-x̅)(y-ȳ) = -435050.0
estimated slope , ß1 = SSxy/SSxx =
-435050.0 / 484.500
= -897.9360
intercept, ß0 = y̅-ß1* x̄ =
28135.9477
so, regression line is Ŷ = 28136
+ -898 *x
4)
Predicted Y at X= 19 is
Ŷ = 28136.00000 +
-898.000000 * 19 =
11074
5)
period | demand | forcast | forecast error=demand value-forecast value | absolute forecast error | squared forcast error | Abs %error |
t | Dt | Ft | et=Dt-Ft | | et | | (et)² | | et/Dt | |
1 | 34400 | 27238 | 7162.00 | 7162.00 | 51294244.00 | 20.82% |
2 | 29700 | 26340.000 | 3360.00 | 3360.00 | 11289600.00 | 11.31% |
3 | 29000 | 25442.000 | 3558.00 | 3558.00 | 12659364.00 | 12.27% |
4 | 16600 | 24544.000 | -7944.00 | 7944.00 | 63107136.00 | 47.86% |
5 | 20500 | 23646.000 | -3146.00 | 3146.00 | 9897316.00 | 15.35% |
6 | 20300 | 22748.000 | -2448.00 | 2448.00 | 5992704.00 | 12.06% |
7 | 22500 | 21850.000 | 650.00 | 650.00 | 422500.00 | 2.89% |
8 | 17400 | 20952.000 | -3552.00 | 3552.00 | 12616704.00 | 20.41% |
9 | 19600 | 20054.000 | -454.00 | 454.00 | 206116.00 | 2.32% |
10 | 16400 | 19156.000 | -2756.00 | 2756.00 | 7595536.00 | 16.80% |
11 | 17700 | 18258.000 | -558.00 | 558.00 | 311364.00 | 3.15% |
12 | 18100 | 17360.000 | 740.00 | 740.00 | 547600.00 | 4.09% |
13 | 15300 | 16462.000 | -1162.00 | 1162.00 | 1350244.00 | 7.59% |
14 | 17600 | 15564.000 | 2036.00 | 2036.00 | 4145296.00 | 11.57% |
15 | 14200 | 14666.000 | -466.00 | 466.00 | 217156.00 | 3.28% |
16 | 15800 | 13768.000 | 2032.00 | 2032.00 | 4129024.00 | 12.86% |
17 | 14500 | 12870.000 | 1630.00 | 1630.00 | 2656900.00 | 11.24% |
18 | 13300 | 11972.000 | 1328.00 | 1328.00 | 1763584.00 | 9.98% |
MAD/MAE= Σ |et|/n =
2499
6)
MAPE= Σ | et/Dt |/n = 12.55%
= 0.13
Thanks in advance!
revert back for doubt
Please upvote