Question

In: Statistics and Probability

Consider the monthly sales data for the following questions. Month Sales 1 34400 2 29700 3...

Consider the monthly sales data for the following questions.

Month Sales
1 34400
2 29700
3 29000
4 16600
5 20500
6 20300
7 22500
8 17400
9 19600
10 16400
11 17700
12 18100
13 15300
14 17600
15 14200
16 15800
17 14500
18 13300

Step 1 of 6: Fit a linear trend model to the data. What is the R2 value for the linear model? Enter 4 decimal places

Step 2 of 6: How well does the linear trend fit the observed time series data?

Step 3 of 6: What is the linear trend equation? y = [ intercept ] + [ slope ] t (Round to the nearest WHOLE number)

Step 4 of 6: Use the forecasting formula to forecast month t = 19.
Use the intercept and slope rounded to the nearest whole number to calculate your answer.
Round your answer to the nearest whole number. DO NOT ENTER COMMAS OR DECIMALS.

Step 5 of 6: Use the forecasting formula to calculate the fits (forecasts) for periods 1 through 18. Then calculate the MAD.Enter the value of the MAD rounded to the nearest whole number. DO NOT ENTER COMMAS OR DECIMALS.

Step 6 of 6: Use the forecasting formula to calculate the fits (forecasts) for periods 1 through 18. Then calculate the MAPE.Enter the value of the MAPE rounded to two decimals, for example, 0.2031 would be 0.20 and 0.0482 would be 0.05.

CAN YOU PLEASE EXPLAIN HOW TO DO THIS THROUGH EXCEL WITH STEPS? Any help would be greatly appreciated!

Cheers!

Solutions

Expert Solution

1)

ΣX ΣY Σ(x-x̅)² Σ(y-ȳ)² Σ(x-x̅)(y-ȳ)
total sum 171 352900 484.5 580849444.4 -435050.00
mean 9.50 19605.56 SSxx SSyy SSxy

SSE=   (SSxx * SSyy - SS²xy)/SSxx =    190202380.461
      
std error ,Se =    √(SSE/(n-2)) =    3447.847
      
correlation coefficient ,    r = Sxy/√(Sx.Sy) =   -0.8201
      
R² =    (Sxy)²/(Sx.Sy) =    0.6725

2)

correlation coefficient ,    r = Sxy/√(Sx.Sy) =   -0.8201

Hence we can say that model is moderate and negative.

3)

sample size ,   n =   18          
here, x̅ = Σx / n=   9.50   ,     ȳ = Σy/n =   19605.56  
                  
SSxx =    Σ(x-x̅)² =    484.5000          
SSxy=   Σ(x-x̅)(y-ȳ) =   -435050.0          
                  
estimated slope , ß1 = SSxy/SSxx =   -435050.0   /   484.500   =   -897.9360
                  
intercept,   ß0 = y̅-ß1* x̄ =   28135.9477          
                  
so, regression line is   Ŷ =   28136 +   -898   *x

4)

Predicted Y at X=   19   is                  
Ŷ =   28136.00000   +   -898.000000   *   19   =   11074

5)

period demand forcast forecast error=demand value-forecast value absolute forecast error squared forcast error Abs %error
t Dt Ft et=Dt-Ft | et | (et)² | et/Dt |
1 34400 27238 7162.00 7162.00 51294244.00 20.82%
2 29700 26340.000 3360.00 3360.00 11289600.00 11.31%
3 29000 25442.000 3558.00 3558.00 12659364.00 12.27%
4 16600 24544.000 -7944.00 7944.00 63107136.00 47.86%
5 20500 23646.000 -3146.00 3146.00 9897316.00 15.35%
6 20300 22748.000 -2448.00 2448.00 5992704.00 12.06%
7 22500 21850.000 650.00 650.00 422500.00 2.89%
8 17400 20952.000 -3552.00 3552.00 12616704.00 20.41%
9 19600 20054.000 -454.00 454.00 206116.00 2.32%
10 16400 19156.000 -2756.00 2756.00 7595536.00 16.80%
11 17700 18258.000 -558.00 558.00 311364.00 3.15%
12 18100 17360.000 740.00 740.00 547600.00 4.09%
13 15300 16462.000 -1162.00 1162.00 1350244.00 7.59%
14 17600 15564.000 2036.00 2036.00 4145296.00 11.57%
15 14200 14666.000 -466.00 466.00 217156.00 3.28%
16 15800 13768.000 2032.00 2032.00 4129024.00 12.86%
17 14500 12870.000 1630.00 1630.00 2656900.00 11.24%
18 13300 11972.000 1328.00 1328.00 1763584.00 9.98%

MAD/MAE=   Σ |et|/n =    2499

6)

MAPE=   Σ | et/Dt |/n =    12.55%

= 0.13

Thanks in advance!

revert back for doubt

Please upvote


Related Solutions

A sample of 5 months of sales data provided the following information: Month 1 2 3...
A sample of 5 months of sales data provided the following information: Month 1 2 3 4 5 Units Sold 96 110 85 96 93 Develop a point estimate of the population mean number of units sold per month (to 1 decimal). Develop a point estimate of the population standard deviation (to 2 decimals).
Consider the following time series data. Month 1 2 3 4 5 6 7 Value 22...
Consider the following time series data. Month 1 2 3 4 5 6 7 Value 22 13 18 11 19 22 14 Round your answers to two decimal places. a. Compute MSE using the most recent value as the forecast for the next period. Mean squared error is What is the forecast for month ? b. Compute MSE using the average of all data available as the forecast for the next period. Mean squared error is What is the forecast...
Consider the following time series data: Month 1 2 3 4 5 6 7 Value 23...
Consider the following time series data: Month 1 2 3 4 5 6 7 Value 23 15 20 12 18 22 15 (a) Choose the correct time series plot. (i) (ii) (iii) (iv) - Select your answer -Graph (i)Graph (ii)Graph (iii)Graph (iv)Item 1 What type of pattern exists in the data? - Select your answer -Positive trend patternHorizontal patternVertical patternNegative trend patternItem 2 (b) Develop a three-month moving average for this time series. Compute MSE and a forecast for month...
Consider the following time series data. Month 1 2 3 4 5 6 7 Value 25...
Consider the following time series data. Month 1 2 3 4 5 6 7 Value 25 14 21 13 20 24 16 (a) Construct a time series plot. What type of pattern exists in the data? The data appear to follow a seasonal pattern. The data appear to follow a cyclical pattern.     The data appear to follow a trend pattern. The data appear to follow a horizontal pattern. (b) Develop the three-month moving average forecasts for this time series. Month...
Consider the following time series data: Month 1 2 3 4 5 6 7 Value 23...
Consider the following time series data: Month 1 2 3 4 5 6 7 Value 23 14 19 13 19 24 14 (a) Compute MSE using the most recent value as the forecast for the next period. If required, round your answer to one decimal place. What is the forecast for month 8? If required, round your answer to one decimal place. Do not round intermediate calculation. (b) Compute MSE using the average of all the data available as the...
Consider the following time series data: Month 1 2 3 4 5 6 7 Value 24...
Consider the following time series data: Month 1 2 3 4 5 6 7 Value 24 12 20 13 18 24 14 (a) Compute MSE using the most recent value as the forecast for the next period. If required, round your answer to one decimal place. What is the forecast for month 8? If required, round your answer to one decimal place. Do not round intermediate calculation. (b) Compute MSE using the average of all the data available as the...
Consider the following time series data: Month 1 2 3 4 5 6 7 8 Value...
Consider the following time series data: Month 1 2 3 4 5 6 7 8 Value 24 13 21 12 20 23 15 25 Compute MSE using the most recent value as the forecast for the next period. What is the forecast for month 9? Compute MSE using the average of all the data available as the forecast for the next period. What is the forecast for month 9? Which method appears to provide the better forecast?
Consider the following time series data: Month 1 2 3 4 5 6 7 Value 23...
Consider the following time series data: Month 1 2 3 4 5 6 7 Value 23 13 21 13 19 21 17 (a) Choose the correct time series plot. (i) (ii) (iii) (iv) - Select your answer -Graph (i)Graph (ii)Graph (iii)Graph (iv)Item 1 What type of pattern exists in the data? - Select your answer -Positive trend patternHorizontal patternVertical patternNegative trend patternItem 2 (b) Develop a three-month moving average for this time series. Compute MSE and a forecast for month...
Consider the following time series data. Month 1 2 3 4 5 6 7 Value 23...
Consider the following time series data. Month 1 2 3 4 5 6 7 Value 23 11 21 10 20 23 15 Round your answers to two decimal places. a. Compute MSE using the most recent value as the forecast for the next period. Mean squared error is What is the forecast for month ? b. Compute MSE using the average of all data available as the forecast for the next period. Mean squared error is What is the forecast...
Consider the following time series data: Month 1 2 3 4 5 6 7 Value 25...
Consider the following time series data: Month 1 2 3 4 5 6 7 Value 25 12 20 11 20 23 15 (a) Compute MSE using the most recent value as the forecast for the next period. If required, round your answer to one decimal place. What is the forecast for month 8? If required, round your answer to one decimal place. Do not round intermediate calculation. (b) Compute MSE using the average of all the data available as the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT