Question

In: Mechanical Engineering

The quantity of water available for a hydroelectric station is 273 m3/s under a head of 18 m.

The quantity of water available for a hydroelectric station is 273 m3/s under a head of 18 m. Assuming the speed of the turbines to be 150 rpm and the efficiency 82%. determine the least number of identical machines that be needed if (i) Francis turbines whose Ns must not exceed 395, (ii) Kaplan turbines whose Ns must not exceed 690 are chosen, What would be the individual power output of the unit in the cases [ i. Francis P = 9,532 kW, no. of turbines = 5, ii. Kaplan P = 29087 kW, no. = 2 ]

Solutions

Expert Solution


Related Solutions

4 m3/s of water flows in a Rectangular channel with base width 3 m, base slope...
4 m3/s of water flows in a Rectangular channel with base width 3 m, base slope J= 0.0016 and roughness coefficient K= 80. a) find the normal depths and critical depth of the current. B) determine the current regime. roughhness coefficient given 80
Question 7 An axial flow water Kaplan turbine operates under a head of 2.5 m while...
Question 7 An axial flow water Kaplan turbine operates under a head of 2.5 m while the rotational speed is 75 rpm. The runner tip diameter is 4.8 m and the hub diameter is 2.4 m. The flow rate is 48.5 m3/s and hydraulic efficiency of 93%. Assuming zero whirl at exit, determine: Sketch the inlet and outlet velocity triangles at the MEAN radius and calculate: 1.1 The runner blade inlet and exit angles at mean radius. ANS: +/- 74˚...
The head loss of a water of kinematic viscosity 1x10^-6 m^2/s in a 50mm diameter pipeline...
The head loss of a water of kinematic viscosity 1x10^-6 m^2/s in a 50mm diameter pipeline was 0.25m over a length of 10 m at a discaherge of 2L/s. What is the corresponding discharge and hydraulic gradient when oil of kinematic viscosity 8.5x10^-6 m2/s flows through a 250mm diameter pipeline of the same relative roughness.
Given discharge is 450 m3/s, river width is 50 m at a depth of 6 m...
Given discharge is 450 m3/s, river width is 50 m at a depth of 6 m and bed slope of 0.0003, the sediment has a typical diameter of 0.01 m. Estimate the bedload transport using Shield and Einstein-Brown formula. 2. Annual precipitation measurements (Pi in cm) for M City, were given in Problem 1. Determine the magnitude of the 10-year precipitation depth if the data fit: the normal distribution. the Gumbel distribution. How many times was the P10 (normal) exceeded...
A 0.8-km concrete lined canal carries a discharge of 1.20 m3/s. Determine the head loss along...
A 0.8-km concrete lined canal carries a discharge of 1.20 m3/s. Determine the head loss along the channel if the width is 2 m and the flow depth is at 1.2 m. Assume n = 0.018
A flow of 2.0 m3 /s is carried in a rectangular channel of 1.8 m width...
A flow of 2.0 m3 /s is carried in a rectangular channel of 1.8 m width at a depth of 1.0 m (section 1). There is an upward step of 0.18 m together with a contraction where b reduces to 1.4 m (section 2). a) Draw the side view and top view of the channel described above. b) Calculate the specific energy at section 1 and plot the specific energy curve. Show y1, E1, V1 2 /2g on the curve....
Water flows in a horizontal pipeline at a steady flow rate of 0.03 m3 s-1. The...
Water flows in a horizontal pipeline at a steady flow rate of 0.03 m3 s-1. The pipeline terminates with a reducing bend that deflects the water upwards at an angle of 45 degrees, as shown in Figure QB2. The water issues into the atmosphere. The area of the pipe is 150 x 10-4 m2 and the area at the exit to the bend is 25 x 10-4 m2. The gauge pressure at the inlet to the bend is 73.9 kN...
A centrifugal pump delivers water at rate of 0.22 m3/s from a reservoir at a ground...
A centrifugal pump delivers water at rate of 0.22 m3/s from a reservoir at a ground level to another reservoir to height 'h' through a vertical pipe of 0.2 m diameter. Both are open to atmosphere. Power input to pump is 90 kW and it operates with 75% efficiency . f=0.004 use g=9.8 m/s2 density=1000kg/m3. Find 'h'.
A 5 m wide rectangular channel carries a flow of 20 m3/s. The slope of the...
A 5 m wide rectangular channel carries a flow of 20 m3/s. The slope of the channel is 0.005 and the Manning’s n is 0.03. The flow encounters a 0.5 m step up that is 0.1 m long. The depths far upstream and downstream are normal. Classify this channel Qualitatively sketch this scenario, label gradually varied flow curves and provide appropriate depths. Draw this scenario on an E-Y cycle graph, and label all depth changes.
A rectangular channel with a base width of 3 m carries a discharge of 6 m3/s...
A rectangular channel with a base width of 3 m carries a discharge of 6 m3/s at a depth of 1.1 m. At downstream, there is a gradual rising of a channel bed of 0.1 m. a) Plot the specific energy curve from y = 0.4 m to 1.3 m in a step 0.1 m and from the curve, determine the depth of flow at the downstream section. Label the graph and show your working answers clearly on the graph....
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT