Question

In: Statistics and Probability

Day Labs Agent Transaction 24 1 1 24 1 2 21 1 3 20 1 4...

Day Labs Agent Transaction

24

1 1
24 1 2
21 1 3
20 1 4
21 1 5
25 1 6
21 1 7
27 1 8
23 1 9
21 1 10
24 1 11
26 1 12
23 1 13
24 1 14
23 1 15
23 1 16
23 1 17
25 1 18
22 1 19
25 1 20
18 2 1
20 2 2
20 2 3
24 2 4
22 2 5
29 2 6
23 2 7
24 2 8
28 2 9
19 2 10
24 2 11
25 2 12
21 2 13
20 2 14
24 2 15
22 2 16
19 2 17
26 2 18
22 2 19
21 2 20
10 3 1
11 3 2
8 3 3
12 3 4
12 3 5
10 3 6
14 3 7
9 3 8
8 3 9
11 3 10
16 3 11
12 3 12
18 3 13
14 3 14
13 3 15
11 3 16
14 2 17
9 3 18
11 3 19
12 3 20
15 4 1
13 4 2
18 4 3
16 4 4
12 4 5
19 4 6
10 4 7
18 4 8
11 4 9
17 4 10
15 4 11
12 4 12
13 4 13
13 4 14
14 4 15
17 4 16
16 4 17
17 4 18
14 4 19
16 4 20
33 5 1
22 5 2
28 5 3
35 5 4
29 5 5
28 5 6
30 5 7
31 5 8
29 5 9
28 5 10
33 5 11
30 5 12
32 5 13
33 5 14
29 5 15
35 5 16
32 5 17
26 5 18
30 5 19
29 5 20

Use data above please.

a) Prepare aligned box plots of the data. Do the factor level means appear to differ? Does the variability of the observations within each factor level appear to be approximately the same for all factor levels?

b) Obtain the fitted values.

c) Obtain the residuals. Do they sum to zero in accord with (16.21)?

d) Obtain the analysis of variance table.

e) Test whether or not the mean time lapse differs for the five agents; use α =10. Sate alternatives, decision rule, and conclusion .

f) What is the P-value of the test in part (e)? Explain how the same conclusion as in part (e can be reached by knowing the P-value f.

g) Based on the box plots obtained in part (a), does there appear to be much variation in te mean time lapse for the five agents? Is this variation necessarily the result of difterences in the efficiency of operations of the five agents? Discuss.

Solutions

Expert Solution

a)

Variability of the observations appears same for the transactions but different for agents

b) & c) Fitted values and residuals in the table below

Fits and Diagnostics for Unusual Observations

Obs Day Labs Fit Resid Std Resid
26 29.00 24.04 4.96 2.05 R
29 28.00 21.64 6.36 2.63 R
53 18.00 12.56 5.44 2.25 R
57 14.00 20.50 -6.50 -2.66 R
82 22.00 27.72 -5.72 -2.36 R

the sum of the residuals is not zero

d) Variance table as below

Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value
Regression 23 4337.00 188.57 24.46 0.000
Agent 4 4210.01 1052.50 136.51 0.000
Transaction 19 141.76 7.46 0.97 0.507
Error 76 585.99 7.71
Lack-of-Fit 75 573.49 7.65 0.61 0.795
Pure Error 1 12.50 12.50
Total 99 4922.99

e) & f) Method - One way ANOVA analysis to check the means

Null hypothesis All means are equal
Alternative hypothesis Not all means are equal
Significance level α = 0.1

Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value
Agent 4 4195.2 1048.81 136.91 0.000
Error 95 727.7 7.66
Total 99 4923.0

Since the P-value is less than the level of signifance (o.1 or 10%), we can conclude that not all the means for the agents are equal

g) Yes there is a significant difference between the mean time lapse between the agents and due to this variation there is a difference in the efficiencies of the operation of five agents


Related Solutions

10m Wind Speed Data Day 1 Day 2 Day 3 Day 4 Day 5 Day 6...
10m Wind Speed Data Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 3.226 2.908 2.355 3.341 1.507 6.355 6.846 3.144 3.026 2.235 3.402 1.418 6.465 6.581 3.197 2.843 2.168 3.242 1.433 6.613 6.894 3.007 2.995 2.125 3.039 1.6 6.363 6.401 3.05 3.245 2.474 2.983 1.837 6.149 7.19 3.02 3.349 2.421 3.165 2.054 7.19 6.795 3.001 3.085 2.369 2.915 1.669 5.826 7.16 2.957 3.003 2.344 2.414 2.136 6.628 6.583 3.012 3.01 2.509 1.619 2.849 5.999...
Month 1 2 3 4 5 6 7 Value 23 13 20 12 18 21 16...
Month 1 2 3 4 5 6 7 Value 23 13 20 12 18 21 16 (b) Develop a three-month moving average for this time series. Compute MSE and a forecast for month 8. If required, round your answers to two decimal places. Do not round intermediate calculation. MSE:   The forecast for month 8:   (c) Use α = 0.2 to compute the exponential smoothing values for the time series. Compute MSE and a forecast for month 8. If required, round...
Month 1 2 3 4 5 6 7 Value 23 13 20 12 18 21 16...
Month 1 2 3 4 5 6 7 Value 23 13 20 12 18 21 16 (b) Develop a three-month moving average for this time series. Compute MSE and a forecast for month 8. If required, round your answers to two decimal places. Do not round intermediate calculation. MSE:   The forecast for month 8:   (c) Use α = 0.2 to compute the exponential smoothing values for the time series. Compute MSE and a forecast for month 8. If required, round...
MT scores: 11, 11, 16, 17, 19, 20, 21, 21 23 24 24 26 26 27...
MT scores: 11, 11, 16, 17, 19, 20, 21, 21 23 24 24 26 26 27 27 28 28 28 29 30 31 31 32 33 35 37 38 38 39 42 44 Questions for Class MT Score Distribution Analysis 1. Create a boxplot of MT scores. 2. Compute the probability that a randomly selected student from the class scored higher than 20. 3. Are the MT scores normally distributed? Why or why not? 4. Assuming a normal fit, compute...
MT scores: 11, 11, 16, 17, 19, 20, 21, 21 23 24 24 26 26 27...
MT scores: 11, 11, 16, 17, 19, 20, 21, 21 23 24 24 26 26 27 27 28 28 28 29 30 31 31 32 33 35 37 38 38 39 42 44 Questions for Class MT Score Distribution Analysis 1. Create a histogram of MT scores. 2. Describe the shape of the MT scores distribution. 3. Compute the mean and standard deviation. 4. Compute the 5-number summary. 5. Create a boxplot of MT scores. 6. Compute the probability that...
Stumps Larvae 2 10 2 30 1 12 3 24 3 36 4 40 3 43...
Stumps Larvae 2 10 2 30 1 12 3 24 3 36 4 40 3 43 1 11 2 27 5 56 1 18 3 40 2 25 1 8 2 21 2 14 1 16 1 6 4 54 1 9 2 13 1 14 4 50 - How far off are you from the actual number of Beetle larvae from a cottonwood tree with 5 stumps? -  Does it make sense to use a linear regression model here? Write...
Day 1:       4 Day 2:    11 Day 4:    17 Day 7:    26 Day 10:    42...
Day 1:       4 Day 2:    11 Day 4:    17 Day 7:    26 Day 10:    42 Day 12:    58 Day 15:    84 Day 18:    99 Day 20:        108 Day 23:    112 Day 25:    118 Day 28:        120 Day 30:        120 Day 1:       4 Day 2:    11 Day 4:    17 Day 7:    26 Day 10:    42 Day 12:    58 Day 15:    84 Day 18:    99 Day 20:        108 Day 23:    112 Day 25:    118 Day 28:       ...
SE-FamilySize 1 1 4 3 2 4 2 3 4 2 4 1 4 2 2...
SE-FamilySize 1 1 4 3 2 4 2 3 4 2 4 1 4 2 2 4 5 4 5 4 4 2 4 3 1 2 3 5 5 5 Make a confidence interval. Be sure you show all the steps you took. Include a screen shot of any applet you used in your calculations. 2. Choose a confidence level (1 – α). 3. What is xbar? 4. What is s? 5. What is t? (Show a screen shot...
Time (hours) spent on social media per day 2 5 4 6 3 2 4 1...
Time (hours) spent on social media per day 2 5 4 6 3 2 4 1 0 1 3 2 5 4 2 6 3 7 4 3 5 2 4 1 3 4 2 4 3 5 3 6 3 2 4 1. For the above data set, give the minimum and maximum score and calculate the range. 2. Calculate the standard deviation (show your work). 3. Choosing the appropriate format, draw a bar chart or histogram of the...
y x1 x2 13 20 3 1 15 2 11 23 2 2 10 4 20...
y x1 x2 13 20 3 1 15 2 11 23 2 2 10 4 20 30 1 15 21 4 27 38 0 5 18 2 26 24 5 1 16 2 A manufacturer recorded the number of defective items (y) produced on a given day by each of ten machine operators and also recorded the average output per hour (x1) for each operator and the time in weeks from the last machine service (x2). a. What is the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT