In: Statistics and Probability
A 95% confidence interval for mu using the sample results x bar = 14.0 s = 6.9 n = 30
Point Estimate ____
Margin of Error ____
The 95% Confidence interval is _____ to _____
Solution :
Given that,
= 14.0
s =6.9
n = 30
Degrees of freedom = df = n - 1 = 30- 1 = 29
At 95% confidence level the t is ,
= 1 - 95% = 1 - 0.95 = 0.05
/ 2= 0.05 / 2 = 0.025
t /2,df = t0.025,29 = 2.045 ( using student t table)
Margin of error = E = t/2,df * (s /n)
= 2.045 * ( 6.9/ 30)
= 2.5762
The 95% confidence interval estimate of the population mean is,
- E < < + E
14.0 - 2.5762 < < 14.0+ 2.5762
11.4238 < < 16.5762
(11.4238 ,16.5762 )
Point Estimate __14.0__
Margin of Error ____2.5762
The 95% Confidence interval is _(11.4238 ,16.5762 )