Question

In: Math

Solve the initial value problem: 4y''+12y'+9y=0 y(0)=1, y'(0)=-4 a. Using the characteristic equation of the above....

Solve the initial value problem:

4y''+12y'+9y=0 y(0)=1, y'(0)=-4

a. Using the characteristic equation of the above.

b. Using Laplace transform.

Solutions

Expert Solution


Related Solutions

Solve the initial value problem: y'' + 4y' + 4y = 0; y(0) = 1, y'(0)...
Solve the initial value problem: y'' + 4y' + 4y = 0; y(0) = 1, y'(0) = 0. Solve without the Laplace Transform, first, and then with the Laplace Transform.
Solve the initial value problem: y''' - 12y'' + 48y' - 72y = 0 ; y(0)...
Solve the initial value problem: y''' - 12y'' + 48y' - 72y = 0 ; y(0) = 1, y'(0) = 0, y''(0) = 0
Solve the following initial value problem. y(4) − 5y′′′ + 4y′′  =  x,    y(0)  =  0, y′(0)  ...
Solve the following initial value problem. y(4) − 5y′′′ + 4y′′  =  x,    y(0)  =  0, y′(0)  =  0, y′′(0)  =  0, y′′′(0)  =  0.
Solve the laplace transform to solve the initial value problem. y"-6y'+9y=t. Y(0)=0, y'(0)=1
Solve the laplace transform to solve the initial value problem. y"-6y'+9y=t. Y(0)=0, y'(0)=1
use laplace transform to solve the initial value problem: y''+4y=3sint y(0)=1, y'(0)=-1
use laplace transform to solve the initial value problem: y''+4y=3sint y(0)=1, y'(0)=-1
Solve the given initial-value problem. y'' + 4y' + 4y = (5 + x)e^(−2x) y(0) =...
Solve the given initial-value problem. y'' + 4y' + 4y = (5 + x)e^(−2x) y(0) = 3, y'(0) = 6 Arrived at answer y(x)=3e^{-2x}+12xe^{-2x}+(15/2}x^2e^{-2x}+(5/6)x^3e^{-2x) by using variation of parameters but it was incorrect.
solve the initial value problem using the method of undetermined coefficients y''+9y=sin3t, y(0)=0, y'(0)=2. Please list...
solve the initial value problem using the method of undetermined coefficients y''+9y=sin3t, y(0)=0, y'(0)=2. Please list every step for algebra.
Solve the differential equation. y''-3y'-4y=5e^4x initial conditions: y(0)=2 y'(0)=4
Solve the differential equation. y''-3y'-4y=5e^4x initial conditions: y(0)=2 y'(0)=4
Solve the initial value problem below using the method of Laplace transforms. y"-4y'+13y=10e^3t y(0)=1, y'(0)=6
Solve the initial value problem below using the method of Laplace transforms. y"-4y'+13y=10e^3t y(0)=1, y'(0)=6
Solve the differential equation. y'''-4y''+5y'-2y=0 Initial Conditions: y(0)=4 y'(0)=7 y''(0)=11
Solve the differential equation. y'''-4y''+5y'-2y=0 Initial Conditions: y(0)=4 y'(0)=7 y''(0)=11
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT