In: Statistics and Probability
Suppose X is a normal random variable with μ = 600 and σ = 89. Find the values of the following probabilities. (Round your answers to four decimal places.)
(a) P(X < 700)
(b) P(X > 350)
(c) P(300 < X < 900)
(a) P(X<700)
Z-score for 700 = (700-600)/89 = 100/89 =1.12
From standard normal tables, P(Z<1.12) = 0.8686
P(X<700) = P(Z<1.12) = 0.8686
P(X<700) = 0.8686
(b) P(X>350) = 1-P(X 350)
Z-score for 350 = (350-600)/89 = -250/89 = -2.81
From standard normal tables, P(Z -2.81) = 0.0025
P(X 350) = P(Z -2.81) = 0.0025
P(X>350) = 1-P(X 350) = 1-0.0025 =0.9975
P(X>350) = 0.9975
(c) P(300 < X < 900) = P(X<900) - P(X<300)
Z-score for 900 = (900-600)/89 = 300/89 = 3.37 ; Z-score for 300 = (300-600)/89 = -300/89 = -3.37
From standard normal tables,
P(Z<3.37) = 0.9996 ; P(Z<-3.37) = 0.0004
P(X<900) = P(Z<3.37) = 0.9996 ; P(X<300)=P(Z<-3.37) = 0.0004
P(300 < X < 900) = P(X<900) - P(X<300) = 0.9996-0.0004=0.9992
P(300 < X < 900) = 0.9992