Question

In: Advanced Math

Prove that if ∑an converges absolutely, then both ∑Pn and ∑Nn converge

Prove that if ∑an converges absolutely, then both ∑Pn and ∑Nn converge

Solutions

Expert Solution

If converges absolutely then series converges.

         are positive terms of series

and       are negative terms of series .

Since series and both converges.

Therefore, their sum also converges

=> also converges

=> converges

Similarly, as and converges.

Therefore, also converges

=> also converges.

=> converges.

Hnece, and converges if converges absolutely.


Related Solutions

prove every cauchy sequence converges
prove every cauchy sequence converges
Determine whether the series converges absolutely, conditionally, or not at all. ∞ n = 1 (−1)n...
Determine whether the series converges absolutely, conditionally, or not at all. ∞ n = 1 (−1)n 1 + n3
Determine if ∑(-1)^n/(4n-7), n=0 to infinity, absolutely or conditionally converges or diverges?
Determine if ∑(-1)^n/(4n-7), n=0 to infinity, absolutely or conditionally converges or diverges?
Determine if the following series converge or diverge. If it converges, find the sum. a. ∑n=(3^n+1)/(2n)...
Determine if the following series converge or diverge. If it converges, find the sum. a. ∑n=(3^n+1)/(2n) (upper limit of sigma∞, lower limit is n=0) b.∑n=(cosnπ)/(2) (upper limit of sigma∞ , lower limit is n= 1 c.∑n=(40n)/(2n−1)^2(2n+1)^2 (upper limit of sigma ∞ lower limit is n= 1 d.)∑n = 2/(10)^n (upper limit of sigma ∞ , lower limit of sigma n= 10)
Use induction to prove Let f(x) be a polynomial of degree n in Pn(R). Prove that...
Use induction to prove Let f(x) be a polynomial of degree n in Pn(R). Prove that for any g(x)∈Pn(R) there exist scalars c0, c1, ...., cn such that g(x)=c0f(x)+c1f′(x)+c2f′′(x)+⋯+cnf(n)(x), where f(n)(x)denotes the nth derivative of f(x).
Prove that the Jacobi method converges for strictly column-diagonally dominant matrices.
Prove that the Jacobi method converges for strictly column-diagonally dominant matrices.
Prove that every sequence in a discrete metric space converges and is a Cauchy sequence. This...
Prove that every sequence in a discrete metric space converges and is a Cauchy sequence. This is all that was given to me... so I am unsure how I am supposed to prove it....
1. Given the series: ∞∑k=1 2/k(k+2) does this series converge or diverge? converges diverges If the...
1. Given the series: ∞∑k=1 2/k(k+2) does this series converge or diverge? converges diverges If the series converges, find the sum of the series: ∞∑k=1 2/k(k+2)= 2. Given the series: 1+1/4+1/16+1/64+⋯ does this series converge or diverge? diverges converges If the series converges, find the sum of the series: 1+1/4+1/16+1/64+⋯=
Prove that if {xn} converges to x does not equal to 0 and xn is non-zero...
Prove that if {xn} converges to x does not equal to 0 and xn is non-zero for all n, then there exists m > 0 so that |xn| ≥ m for all n.
Give a counterexample: a) Xn + Yn converges if and only if both Xn and Yn...
Give a counterexample: a) Xn + Yn converges if and only if both Xn and Yn converge. b) Xn Yn converges if and only if both Xn and Yn converge.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT