In: Finance
Based on the following data;
State of the Economy Probability Stock A Rate of Return Stock B Rate of Return
Recession 0.2 4% -20%
Normal Growth 0.65 8% 20%
Boom 0.15 16% 60%
(a) calculate the expected return and the standard deviation of returns for each stock.
(b) Calculate the expected return and the standard deviation on the portfolio, where
the portfolio is formed by investing 50% of the funds in Stock A and the rest in Stock B.
Answer a.
Stock A:
Expected Return = 0.20 * 0.04 + 0.65 * 0.08 + 0.15 * 0.16
Expected Return = 0.0840 or 8.40%
Variance = 0.20 * (0.04 - 0.084)^2 + 0.65 * (0.08 - 0.084)^2 +
0.15 * (0.16 - 0.084)^2
Variance = 0.001264
Standard Deviation = (0.001264)^(1/2)
Standard Deviation = 0.0356 or 3.56%
Stock B:
Expected Return = 0.20 * (-0.20) + 0.65 * 0.20 + 0.15 *
0.60
Expected Return = 0.1800 or 18.00%
Variance = 0.20 * (-0.20 - 0.18)^2 + 0.65 * (0.20 - 0.18)^2 +
0.15 * (0.60 - 0.18)^2
Variance = 0.055600
Standard Deviation = (0.055600)^(1/2)
Standard Deviation = 0.2358 or 23.58%
Answer b.
Weight of Stock A = 0.50
Weight of Stock B = 0.50
Recession:
Expected Return = 0.50 * 0.04 + 0.50 * (-0.20)
Expected Return = -0.08
Normal:
Expected Return = 0.50 * 0.08 + 0.50 * 0.20
Expected Return = 0.14
Boom:
Expected Return = 0.50 * 0.16 + 0.50 * 0.60
Expected Return = 0.38
Portfolio:
Expected Return = 0.20 * (-0.08) + 0.65 * 0.14 + 0.15 *
0.38
Expected Return = 0.1320 or 13.20%
Variance = 0.20 * (-0.08 - 0.1320)^2 + 0.65 * (0.14 - 0.1320)^2
+ 0.15 * (0.38 - 0.1320)^2
Variance = 0.018256
Standard Deviation = (0.018256)^(1/2)
Standard Deviation = 0.1351 or 13.51%