In: Statistics and Probability
Assume a normal distribution and find the following probabilities. (Round the values of z to 2 decimal places. Round your answers to 4 decimal places.)
(a) P(x < 18 | μ = 21 and σ = 4)
(b) P(x ≥ 43 | μ = 30 and σ = 8)
(c) P(x > 28 | μ = 30 and σ = 6)
(d) P(13 < x < 21 | μ = 19 and σ = 4)
(e) P(x ≥ 75 | μ = 60 and σ = 2.83)
Solution :
Given that ,
(a)
mean = = 21
standard deviation = = 4
P(x < 18) = P[(x - ) / < (18 - 21) / 4]
= P(z < -0.75)
= 0.2266
P(x < 18) = 0.2266
(b)
mean = = 30
standard deviation = = 8
P(x 43) = 1 - P(x 43)
= 1 - P[(x - ) / (43 - 30) / 8]
= 1 - P(z 1.63)
= 1 - 0.9484
= 0.0516
P(x 43) = 0.0216
(c)
mean = = 30
standard deviation = = 6
P(x > 28) = 1 - P(x < 28)
= 1 - P[(x - ) / < (28 - 30) / 6]
= 1 - P(z < -0.33)
= 1 - 0.3707
= 0.6293
P(x > 28) = 0.6293
(d)
mean = = 19
standard deviation = = 4
P(13 < x < 21) = P[(13 - 19)/ 4) < (x - ) / < (21 - 19) / 4) ]
= P(-1.5 < z < 0.5)
= P(z < 0.5) - P(z < -1.5)
= 0.6915 - 0.0668
= 0.6247
P(13 < x < 21) = 0.6247
(e)
mean = = 60
standard deviation = = 2.83
P(x 75) = 1 - P(x 75)
= 1 - P[(x - ) / (75 - 60) / 2.83]
= 1 - P(z 5.30)
= 1 - 1
= 0
P(x 75) = 0