In: Statistics and Probability
Assume a normal distribution and find the following probabilities. (Round the values of z to 2 decimal places. Round your answers to 4 decimal places.)
(a) P(x < 16 | μ = 20 and σ = 3)
(b) P(x ≥ 62 | μ = 50 and σ = 7)
(c) P(x > 43 | μ = 50 and σ = 5)
(d) P(16 < x < 21 | μ = 18 and σ = 3)
(e) P(x ≥ 73 | μ = 60 and σ = 1.77)
A)
µ = 20
σ = 3
P( X ≤ 16 ) = P( (X-µ)/σ ≤ (16-20)
/3)
=P(Z ≤ -1.33 ) = 0.0912
B)
µ = 50
σ = 7
P ( X ≥ 62 ) = P( (X-µ)/σ ≥ (62-50) /
7)
= P(Z ≥ 1.71 ) = P( Z <
-1.71 ) = 0.0432 (answer)
C)
µ = 50
σ = 5
P ( X > 43 ) = P( (X-µ)/σ ≥ (43-50) / 5)
= P(Z > -1.40 ) = P( Z <
1.400 ) = 0.9192
(answer)
D)
µ = 18
σ = 3
we need to calculate probability for ,
P ( 16 < X <
21 )
=P( (16-18)/3 < (X-µ)/σ < (21-18)/3 )
P ( -0.667 < Z <
1.000 )
= P ( Z < 1.000 ) - P ( Z
< -0.67 ) =
0.8413 - 0.2525 =
0.5889
E)
µ = 60
σ = 1.77
P ( X ≥ 73 ) = P( (X-µ)/σ ≥ (73-60) /
1.77)
= P(Z ≥ 7.34 ) = P( Z <
-7.345 ) = 0.0000 (answer)