In: Statistics and Probability
Use the following data to develop a quadratic model to predict
y from x. Develop a simple regression model from
the data and compare the results of the two models. Does the
quadratic model seem to provide any better predictability? Why or
why not?
|
|||||||||||||||||||||||||||||||||||||||
|
Answer:-
Given That:-
Use the following data to develop a quadratic model to predict y from x. Develop a simple regression model from the data and compare the results of the two models. Does the quadratic model seem to provide any better predictability? Why or why not?
Given,
Simple
SUMMARY OUTPUT | ||||||
Regression statistics | ||||||
Multiple R | 0.985100338 | |||||
R square | 0.970422677 | |||||
Adjusted R square | 0.966197345 | |||||
Standard Error | 27.26526302 | |||||
Observations | 9 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 1 | 170733.7936 | 170733.7936 | 229.6677983 | 1.31023E-06 | |
Residual | 7 | 5203.761973 | 743.3945676 | |||
Total | 8 | 175937.5556 | ||||
Coefficients | Standard Error | t Stat | P - value | Lower 95% | Upper 95% | |
Intercept | -147.269636 | 22.77583041 | -6.466049026 | 0.000344996 | -201.1259169 | -93.41335509 |
x | 27.12787356 | 1.790052214 | 15.15479456 | 1.31023E-06 | 22.89507269 | 31.36067444 |
Quadratic
SUMMARY OUTPUT | ||||||
Regression Statistics | ||||||
Multiple R | 0.997418275 | |||||
R Square | 0.994843215 | |||||
Adjusted R square | 0.993124286 | |||||
Standard Error | 12.29683009 | |||||
Observations | 9 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 2 | 175030.2834 | 87515.14169 | 578.757798 | 1.37131E-07 | |
Residual | 6 | 907.2721818 | 151.2120303 | |||
Total | 8 | 175937.5556 | ||||
Coefficients | Standard Error | t Stat | P - value | Lower 95% | Upper 95% | |
Intercept | -22.01123636 | 25.64570955 | -0.85828143 | 0.423691879 | -84.76402698 | 40.74155426 |
x | 3.384864819 | 4.526796386 | 0.747739578 | 0.482883408 | -7.691806904 | 14.46153654 |
0.937330351 | 0.175844569 | 5.330448108 | 0.001777382 | 0.507054191 | 1.367606511 |
for linear = 0.970422677
for quadratic model = 0.994843215
since for quadratic is more that for linear
Quadratic model is better
Thank you for your supporting. please upvote my answer...