Question

In: Electrical Engineering

For the system with transfer function H(s)=1/(s-2)(s-1) determine the ROC for stability.

For the system with transfer function H(s)=1/(s-2)(s-1) determine the ROC for stability.

Solutions

Expert Solution

I solved this problem..

First I found out the inverse Laplace transform to find whether the signal is right sided or left sided..

Then I found out ROCs and plotted and common ROC is given... ROC came to be Re{s}>1.. Please do observe in images... Thank you... Have a nice day.... :)


Related Solutions

1. Determine the ROC for stability for transfer function H(s) = 1 / (s-2) ( s-1)...
1. Determine the ROC for stability for transfer function H(s) = 1 / (s-2) ( s-1) 2. Determine the ROC for stability for transfer function H(z) = (z-1) / (z+0.1) (z-0.2)
Determine the transfer function H(s)/Q(s) for the liquid-level system shown in Fig. Resistances R1 and R2...
Determine the transfer function H(s)/Q(s) for the liquid-level system shown in Fig. Resistances R1 and R2 are linear. The flow rate from tank 3 is maintained constant at b by means of a pump; i.e., the flow rate from tank 3 is independent of head h. The tanks are noninteracting
A system has the transfer function H(s)=3(s2+7 s)/(s2+8s+4). Draw a Bode plot of the transfer function...
A system has the transfer function H(s)=3(s2+7 s)/(s2+8s+4). Draw a Bode plot of the transfer function and classify it as lowpass, highpass, bandpass, or bandstop. Draw the Direct Form II for this system.
Used to determine the stability of a system by examining the characteristic equation of the transfer...
Used to determine the stability of a system by examining the characteristic equation of the transfer function. States that the number of roots of the characteristic equation with positive real parts is equal to the number of changes of sign of the coefficients in the first column of the array. A. Routh-Hurwitz Criterion B. Polar plot C. Logarithmic plot D. Bode plot
Say we have a transfer function that is H(s)= (2s^2-5s+3) / (s-1). Which of these statements...
Say we have a transfer function that is H(s)= (2s^2-5s+3) / (s-1). Which of these statements is correct? This system is stable, since one of its zeros is in the right-hand part of the s-plane This system is stable, since one of its poles is in the right-hand part of the s-plane This system is unstable, since its only zero is in the left-hand part of the s-plane This system is stable, since its only pole is in the left-hand...
Consider a system with the following transfer function, G(s) = 10/ [s(s + 1)]. Design a...
Consider a system with the following transfer function, G(s) = 10/ [s(s + 1)]. Design a compensator according to the following design objectives: • Kv = 20 sec−1 ; • PM = 50 oF; • GM ≥ 10 dB. Submit your answer regarding the detailed compensator design procedures, and the corresponding MATLAB code and figures to verify your design. In addition, compare the step response of both uncompensated and compensated systems in MATLAB
Given a system with the transfer function p(S)= (s+1)/(s(2s^2+4s+3)(2s+1)) Each section must specify the way of...
Given a system with the transfer function p(S)= (s+1)/(s(2s^2+4s+3)(2s+1)) Each section must specify the way of solution / explanation / reasoning A. 8 points (Is the system in an open circle asymptomatic or BIBO stable or unstable? B. (8 pts) Closes a control circle with a proportional controller. What is the range of K values for which The closed circle is stable? third. 4 points (what is the constant state error of the system in the open circle for step...
Consider the transfer function G(s) = 1/[(s+1)^2(s+2)]. We use a PI compensator C(s)=(as+b)/s and close the...
Consider the transfer function G(s) = 1/[(s+1)^2(s+2)]. We use a PI compensator C(s)=(as+b)/s and close the feedback loop. 1.) Find out the entire range of a and b at which the closed-loop is stable and show it on the plane with a and b axes. 2.) At the border of instability, find the frequency of oscillations in terms of a. 3.) For what value of a, do we get the largest range of b for stability? What is this largest...
A function of the feedback control system is desired: = (2 (s + 1)) / (s...
A function of the feedback control system is desired: = (2 (s + 1)) / (s ^ 2 + 3s + 2). If the function transfer process is second order with gain = 4, time constant = 1, damping factor = 1.5, arrange the form of the PID controller function transfer using the direct synthesis method.
A Unity feedback system has an open loop transfer function of G(s) = K / s...
A Unity feedback system has an open loop transfer function of G(s) = K / s (s+1) (s+5) Draw the root locus plot and determine the value of K to give a damping ratio of 0.3 A network having a transfer function of 10(1 +10s) /(1 +100s) is now introduced in tandem. Find the new value of K, which gives the same damping ratio for the closed -loop response. Compare the velocity error constant and settling time of the original...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT