Question

In: Statistics and Probability

If the R-square of the simple regression of Y on X is 0.5, then the hypothesis...

If the R-square of the simple regression of Y on X is 0.5, then the hypothesis that X doesnot have statistically significant effect on Y …… at the 5% level of significance.

might be accepted or rejected

is accepted

is rejected

can not be tested

Solutions

Expert Solution

Soluion: In order to test the above question, the method is to construct our null and alternative hypotheses as:

H0: rho = 0 vs Ha: rho not equal to 0 where rho is the population correlation coefficient
The test statistic to answer the given question is T=r*sqrt(n-2)/sqrt(1 -(r*r)) where r is the sample correlation coefficient and n is the sample size, sqrt refers to the square root function.

Here r is obtained by square root of R.
We reject H0 iff|T(observed)| > t(alpha/2,(n-2)) where t(Alpha/2,(n-2)) is the upper alpha/2 point of a Student's t distribution with (n-2) degrees of freedom. Or if p-value for the test statistics is less than the level of significance, alpha.

In both cases, we need the sample size to calculate the critical value or p-value.

Since the sample size is not given, he hypothesis that X doesnot have statistically significant effect on Y at the 5% level of significance.can not be tested.

Option (iv) is correct.


Related Solutions

Linear Regression Regression Statistics R 0.99798 R Square 0.99597 Adjusted R Square 0.99445 Standard Error 1.34247...
Linear Regression Regression Statistics R 0.99798 R Square 0.99597 Adjusted R Square 0.99445 Standard Error 1.34247 Total Number Of Cases 12 Hamb Consump = 176.2709 - 106.6901 * Hamb Price + 4.5651 * Income (1,000s) - 12.1556 * Hot Dog Price ANOVA d.f. SS MS F p-level Regression 3. 3,560.58212 1,186.86071 658.549258 0. Residual 8. 14.41788 1.80224 Total 11. 3,575. Coefficients Standard Error LCL UCL t Stat p-level H0 (5%) rejected? Intercept 176.27093 45.28994 71.83215 280.709717 3.89206 0.0046 Yes Hamb...
Describe the each scatterplot's usefulness in terms. (x and y has simple linear regression relationship.) (Y~X)...
Describe the each scatterplot's usefulness in terms. (x and y has simple linear regression relationship.) (Y~X) 1. scatter plot of x and y 2. scatter plot of x and residuals 3. scatter plot of order of the x and residuals 4. scatter plot of yhat and residuals
Importance of R Square Value in Simple Linear Regression. What happens when you increase number of...
Importance of R Square Value in Simple Linear Regression. What happens when you increase number of controlled variables? Is it good to increase the number of controlled variable? If yes, why and if not why not? Be specific on your discussion.
1- The regression of X on Y is not the same as the regression of Y...
1- The regression of X on Y is not the same as the regression of Y on X. Why is this? Select one: a. Because the regression minimises the residuals of y, not the residuals of x. b. Because unlike correlation, regression assumes X causes Y. c. Because one goes through (mean x, mean y) whereas the other goes through (mean y, mean x). d. Because the F test divides MSy by MSx, not the other way round. 2- Using...
how do you test for regression in R studio with variables x and y
how do you test for regression in R studio with variables x and y
1: Utility U(x, y) = x^0.5 y^0.5 is given by Income I = 1000. Price of...
1: Utility U(x, y) = x^0.5 y^0.5 is given by Income I = 1000. Price of x is px =10 and price of y is py = 20 1 The price of x increases from p0x = 10 to p1x = 20. Calculate the 1. New Demand for x and y 3 Obtain the demand for x and y at income I1 and NEW prices p1x = 20, py =20 4 Obtain the substitution and income effect 5 What is...
Using Excel: Regression Statistics Multiple R 0.9021 R- Square 0.8138 Adjusted R Square 0.7828 Standard Error...
Using Excel: Regression Statistics Multiple R 0.9021 R- Square 0.8138 Adjusted R Square 0.7828 Standard Error 9.4006 ANOVA df SS MS F Regression 1 2317.6 2317.6 26.226 Residual 6 530.23 88.372 Total 7 2847.9 Coefficients Standard Error t Stat P-value Intercept 45.897 5.5447 8.2776 0.0002 Number of Surgeries (x) 5.1951 1.0144 5.1211 0.0022 1. r = 0.90 strong positive correlation 2. y = 5.195 x + 45.897 , 3. r2 = 0.8138 , and 4. Se =  9.4006 5. Results of...
Dep.= Mileage Indep.= Octane SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard...
Dep.= Mileage Indep.= Octane SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard Error Observations 7.0000 ANOVA Significance df SS MS F F Regression 9.1970 Residual Total 169.4286 Standard Coefficients Error t Stat P-value Lower 95% Upper 95% Intercept -115.6768 Octane 1.5305 SE CI CI PI PI Predicted Predicted Lower Upper Lower Upper x0 Value Value 95% 95% 95% 95% 89.0000 1.4274 87.0000 2.0544 Is there a relationship between a car's gas MILEAGE (in miles/gallon) and the...
SUMMARY OUTPUT Regression Statistics Multiple R 0.727076179 R Square 0.528639771 Adjusted R Square 0.525504337 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.727076179 R Square 0.528639771 Adjusted R Square 0.525504337 Standard Error 3.573206748 Observations 455 ANOVA df SS MS F Significance F Regression 3 6458.025113 2152.67504 168.601791 2.7119E-73 Residual 451 5758.280717 12.7678065 Total 454 12216.30583 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 99.0% Upper 99.0% Intercept -0.250148858 0.359211364 -0.6963835 0.48654745 -0.9560846 0.45578693 -1.1793476 0.67904987 RBUK 0.025079378 0.023812698 1.05319345 0.29281626 -0.0217182 0.07187699 -0.0365187 0.08667745 RSUS 0.713727515 0.042328316 16.8617037 8.0578E-50 0.6305423 0.79691273 0.60423372 0.82322131...
SUMMARY OUTPUT Regression Statistics Multiple R 0.72707618 R Square 0.52863977 Adjusted R Square 0.52550434 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.72707618 R Square 0.52863977 Adjusted R Square 0.52550434 Standard Error 3.57320675 Observations 455 ANOVA df SS MS F Significance F Regression 3 6458.02511 2152.67504 168.601791 2.7119E-73 Residual 451 5758.28072 12.7678065 Total 454 12216.3058 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 99.0% Upper 99.0% Intercept -0.2501489 0.35921136 -0.6963835 0.48654745 -0.9560846 0.45578693 -1.1793476 0.67904987 RUK 0.02507938 0.0238127 1.05319345 0.29281626 -0.0217182 0.07187699 -0.0365187 0.08667745 RSUS 0.71372752 0.04232832 16.8617037 8.0578E-50 0.6305423 0.79691273 0.60423372 0.82322131...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT