Question

In: Physics

A passenger on a moving train walks at a speed of 1.60 m/s due north relative...

A passenger on a moving train walks at a speed of 1.60 m/s due north relative to the train. The passenger's speed with respect to the ground is 4.5 m/s at an angle of 35.0° west of north. What are the magnitude and direction of the velocity of the train relative to the ground? _______m/s direction ______ ° west of north

Solutions

Expert Solution

let the direction be :

velocity of passenger with respect to group:

Vpg = Vpt + Vtg

Vtg = Vpg - Vpt

Lets resolve the vector Vpg into components

angle from positive x axis, θ = 125.0

Vpgx = Vpg * cos θ

= 4.5 * cos(125.0)

= -2.5811 m/s

Vpgy = Vpg * sin θ

= 4.5 * sin(125.0)

= 3.6862 m/s

Lets resolve the vector Vpt into components

angle from positive x axis, θ = 90.0

Vptx = Vpt * cos θ

= 16.0 * cos(90.0)

= 0 m/s

Vpty = Vpt * sin θ

= 16.0 * sin(90.0)

= 16 m/s

we have:

Vpg = -2.5811i+ 3.6862j

Vpt = 0i+ 16j

Vtg = Vpg - Vpt

Vtg = (-2.5811i+ 3.6862j) - (0i+ 16j)

= (Vpgx - Vptx)i + (Vpgy - Vpty)j

= (-2.5811 - 0)i + (3.6862 - 16)j

= -2.5811i- 12.3138j

magnitude of Vtg = sqrt (-2.5811^2 + -12.3138^2)

magnitude of Vtg = 12.6 m/s

Since x component is negative and y component is also negative

It lies in the 3rd cordinate

angle = 180 + atan(|y/x|)

angle = 180 + atan(|-12.3138/-2.5811|)

angle = 191.84 degree from x axis

which is 191.84 - 90 = 101.84 west of north

12.6 m/s

101.84 degree


Related Solutions

A commuter train passes a passenger platform at a constant speed of 38.1 m/s. The train...
A commuter train passes a passenger platform at a constant speed of 38.1 m/s. The train horn is sounded at its characteristic frequency of 340 Hz. (a) What overall change in frequency is detected by a person on the platform as the train moves from approaching to receding? (Indicate whether the frequency increases of decreases with the sign of your answer.) Hz (b) What wavelength is detected by a person on the platform as the train approaches? m
1. A commuter train passes a passenger platform at a constant speed of 41.7 m/s. The...
1. A commuter train passes a passenger platform at a constant speed of 41.7 m/s. The train horn is sounded at its characteristic frequency of 350 Hz. (a) What overall change in frequency is detected by a person on the platform as the train moves from approaching to receding? (Indicate whether the frequency increases of decreases with the sign of your answer.) (b) What wavelength is detected by a person on the platform as the train approaches? 2. Two small...
A trooper is moving due south along the freeway at a speed of 33 m/s. At...
A trooper is moving due south along the freeway at a speed of 33 m/s. At time t = 0, a red car passes the trooper. The red car moves with constant velocity of 45 m/s southward. At the instant the trooper's car is passed, the trooper begins to speed up at a constant rate of 1.5 m/s2. What is the maximum distance ahead of the trooper that is reached by the red car? m
Mario, a hockey player, is skating due south at a speed of 6.35 m/s relative to...
Mario, a hockey player, is skating due south at a speed of 6.35 m/s relative to the ice. A teammate passes the puck to him. The puck has a speed of 8.09 m/s and is moving in a direction of 22.0 ° west of south, relative to the ice. What are (a) the magnitude and (b) direction (relative to due south) of the puck's velocity, as observed by Mario?
•• A meter stick is moving with speed relative to a frame S. (a) What is...
•• A meter stick is moving with speed relative to a frame S. (a) What is the stick’s length, as measured by observers in S, if the stick is parallel to its velocity v? (b) What if the stick is perpendicular to v? (c)What if the stick is at to v, as seen in the stick’s rest frame? [HINT: You can imagine that the meterstick is the hypotenuse of a 30–60–90 triangle of plywood.] (d) What if the stick is...
A billiard ball A moving at a speed of 2.4 m / s bumps into a...
A billiard ball A moving at a speed of 2.4 m / s bumps into a billiard ball B of the same mass, which are at rest. After the impact, A moves at a speed of 1.4 m / s in a direction that forms the angle 50 ◦ with A's original direction of movement. Determine the magnitude and direction of B's ​​velocity vector by the impact. (Answer 1.8 m / s; 36 ◦)
Object A is moving due east, while object B is moving due north. They collide and...
Object A is moving due east, while object B is moving due north. They collide and stick together in a completely inelastic collision. Momentum is conserved. Object A has a mass of mA = 16.4 kg and an initial velocity of = 8.40 m/s, due east. Object B, however, has a mass of mB = 28.2 kg and an initial velocity of = 5.43 m/s, due north. Find the (a) magnitude and (b) direction of the total momentum of the...
Object A is moving due east, while object B is moving due north. They collide and...
Object A is moving due east, while object B is moving due north. They collide and stick together in a completely inelastic collision. Momentum is conserved. Object A has a mass of mA = 17.0 kg and an initial velocity of v0A = 8.10 m/s, due east. Object B, however, has a mass of mB = 29.0 kg and an initial velocity of v0B = 5.20 m/s, due north. Find the magnitude of the final velocity of the two-object system...
1. A boy in a pedal car is moving at a speed of 1.40 m/s at...
1. A boy in a pedal car is moving at a speed of 1.40 m/s at the start of a 2.10 m high and 12.4 m long incline. The total mass is 54.5 kg, air resistance and rolling resistance can be modeled as a constant friction force of 41.0 N, and the speed at the lower end of the incline is 6.80 m/s. Determine the work done (in J) by the boy as the car travels down the incline. 2....
A softball of mass 0.220 kg that is moving with a speed of 8.0 m/s (in...
A softball of mass 0.220 kg that is moving with a speed of 8.0 m/s (in the positive direction) collides head-on and elastically with another ball initially at rest. Afterward the incoming softball bounces backward with a speed of 6.4 m/s. (a) Calculate the velocity of the target ball after the collision. (b) Calculate the mass of the target ball
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT