Question

In: Physics

A 1.5 kg solid cylinder (radius = 0.15 m , length = 0.60 m ) is...

A 1.5 kg solid cylinder (radius = 0.15 m , length = 0.60 m ) is released from rest at the top of a ramp and allowed to roll without slipping. The ramp is 0.80 m high and 5.0 m long.

When the cylinder reaches the bottom of the ramp, what is its total kinetic energy?

When the cylinder reaches the bottom of the ramp, what is its rotational kinetic energy?

When the cylinder reaches the bottom of the ramp, what is its translational kinetic energy?

Solutions

Expert Solution

Gven,

Mass of the cylinder, m = 1.5 kg

radius of the cylinder, r = 0.15 m

lemgth, l = 0.60 m

Height of the ramp, h = 0.80 m

Now,

Let the velocity at the bottom of the ramp be v

Now, applying conservation of energy

=> iniitial energy = final energy

=> mgh = Kf

=> Kf = 1.5*9.8*0.80 = 117.6 J

Total kinetic energy at the bottom is 117.6 J

Now,

Total Kinetic energy, Kf = 1/2*m*v2 + 1/2*I*2

AS we know,

= v/r    and I = mr2/2

=> Kf = 1/2*m*v2 + 1/2*(mr2/2)*(v/r)2

          = 1/2*m*v2 + 1/4*m*v2 = 3/4*m*v2

or Kf = 3/4*m*v2

Now,

rotational kinetic energy, KR = 1/2*I*2 = 1/4*m*v2

                                               = 1/3*( 3/4*m*v2) = 1/3*Kf

                                               = 1/3*117.6 = 39.2 J

Transitional kinetic energy, KT = 1/2*m*v2 = 2/3*( 3/4*m*v2)

                                                  = 2/3*Kf = 2/3*117.6

                                                  = 78.4 J


Related Solutions

A solid cylinder has a mass of 2.50 kg and a radius of 0.100 m. It...
A solid cylinder has a mass of 2.50 kg and a radius of 0.100 m. It is released from rest on a ramp tilted at 8.00° from horizontal, and it rolls without slipping down the ramp until it has moved a vertical distance of 0.350 m. What is the angular speed of the cylinder when it reaches the bottom? What is the magnitude of the angular momentum of the cylinder when it reaches the bottom?
A 2.50-kg grinding wheel is in the form of a solid cylinder of radius 0.100 m....
A 2.50-kg grinding wheel is in the form of a solid cylinder of radius 0.100 m. 1- What constant torque will bring it from rest to an angular speed of 1200 rev/min in 2.5 s? 2- Through what angle has it turned during that time? 3- Use equation W=τz(θ2−θ1)=τzΔθ to calculate the work done by the torque. 4- What is the grinding wheel’s kinetic energy when it is rotating at 1200 rev/min? 5- Compare your answer in part (D) to...
A solid cylinder of radius 1.5 m has a uniform volume charge density of 15 C/m3....
A solid cylinder of radius 1.5 m has a uniform volume charge density of 15 C/m3. Find the magnitude of the electric field at 1.25 m from the axis of the cylinder. a) what will your gaussian surface be? Make a sketch of the solid cylinder and the gaussian surface with their radii b) Write an expression for the total electric flux through the gaussian surface, that is the LHS (Left hand side) of the Gauss' law (this expression may...
A rope of negligible mass is wrapped around a 225-kg solid cylinder of radius 0.400 m....
A rope of negligible mass is wrapped around a 225-kg solid cylinder of radius 0.400 m. The cylinder is suspended several meters off the ground with its axis oriented horizontally, and turns on that axis without friction. (a) If a 75.0-kg man takes hold of the free end of the rope and falls under the force of gravity, what is his acceleration? m/s2 (b) What is the angular acceleration of the cylinder? rad/s2 (c) If the mass of the rope...
A solid cylinder with a mass of 3 kg, a radius of 25 cm, and a...
A solid cylinder with a mass of 3 kg, a radius of 25 cm, and a length of 40 cm is rolling across a horizontal floor with a linear speed of 12 m/s. The cylinder then comes to a ramp, and, as it is rolling up this ramp without slipping, it is slowing down. When the cylinder finally comes to a stop and begins rolling back down the ramp, how high is it above the floor?
A solid sphere of radius R, a solid cylinder of radius R, and a hollow cylinder...
A solid sphere of radius R, a solid cylinder of radius R, and a hollow cylinder of radius R all have the same mass, and all three are rotating with the same angular velocity. The sphere is rotating around an axis through its center, and each cylinder is rotating around its symmetry axis. Which one has the greatest rotational kinetic energy? both cylinders have the same rotational kinetic energy the solid cylinder the solid sphere they all have the same...
A compost barrel can be considered as a solid cylinder of mass 50.0 kg and radius...
A compost barrel can be considered as a solid cylinder of mass 50.0 kg and radius of r = 30.0 cm, and a length of 0.900 m. It can be turned about the long axis by applying a force to a handle located d = 20.0 cm from the axis of the cylinder. The compost barrel needs to be turned through 250 complete revolutions. Assume you can apply a constant force of F = 10.0 N (always perpendicular to the...
A large grinding wheel in the shape of a solid cylinder of radius 0.330 m is...
A large grinding wheel in the shape of a solid cylinder of radius 0.330 m is free to rotate on a frictionless, vertical axle. A constant tangential force of 300 N applied to its edge causes the wheel to have an angular acceleration of 0.894 rad/s2. (a) What is the moment of inertia of the wheel? (b) What is the mass of the wheel? (c) If the wheel starts from rest, what is its angular velocity after 4.90 s have...
A 4.00-m-long cylinder of solid aluminum has a radius of 2.00 cm. 1) If the cylinder...
A 4.00-m-long cylinder of solid aluminum has a radius of 2.00 cm. 1) If the cylinder is initially at a temperature of 4.00∘∘C, how much will the length change when the temperature rises to 30.0°C? 2)Due to the temperature increase, by how much (in %) would the density of the aluminum cylinder decrease? 3)By what percentage does the volume of the cylinder increase?
A solid cylinder (radius = 0.150 m, height = 0.120 m) has a mass of 7.36...
A solid cylinder (radius = 0.150 m, height = 0.120 m) has a mass of 7.36 kg. This cylinder is floating in water. Then oil (ρ = 851 kg/m3) is poured on top of the water until the situation shown in the drawing results. How much of the height of the cylinder is in the oil?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT