Question

In: Physics

A compost barrel can be considered as a solid cylinder of mass 50.0 kg and radius...

A compost barrel can be considered as a solid cylinder of mass 50.0 kg and radius of r = 30.0 cm, and a length of 0.900 m. It can be turned about the long axis by applying a force to a handle located d = 20.0 cm from the axis of the cylinder. The compost barrel needs to be turned through 250 complete revolutions. Assume you can apply a constant force of F = 10.0 N (always perpendicular to the radius as the handle goes around in a circle).
What is the angular acceleration of the barrel?
How much time does it take to turn the barrel through 250 rev?
What is the angular velocity of the barrel at the end of that time? Is this reasonable?

Solutions

Expert Solution

Given,

mass of cylinder is  

radius of cylinder is  

length of cylinder is  

Moment of Inertia of the cylinder is

Torque applied to the cylinder is

Let be its angular acceleration, we have

One complete revolution is , therefore in 250 revolutions,

angular distance covered is

Assuming initially at rest, we have initial angular velocity

Let the time taken by the barrel be , then we have

Let be the final angular velocity, then we have

This is the final angular velocity attained by the cylinder in 250 revolutions


Related Solutions

A solid cylinder with a mass of 3 kg, a radius of 25 cm, and a...
A solid cylinder with a mass of 3 kg, a radius of 25 cm, and a length of 40 cm is rolling across a horizontal floor with a linear speed of 12 m/s. The cylinder then comes to a ramp, and, as it is rolling up this ramp without slipping, it is slowing down. When the cylinder finally comes to a stop and begins rolling back down the ramp, how high is it above the floor?
A solid cylinder has a mass of 2.50 kg and a radius of 0.100 m. It...
A solid cylinder has a mass of 2.50 kg and a radius of 0.100 m. It is released from rest on a ramp tilted at 8.00° from horizontal, and it rolls without slipping down the ramp until it has moved a vertical distance of 0.350 m. What is the angular speed of the cylinder when it reaches the bottom? What is the magnitude of the angular momentum of the cylinder when it reaches the bottom?
In the figure below, a solid cylinder of radius 18 cm and mass 12 kg startsfrom...
In the figure below, a solid cylinder of radius 18 cm and mass 12 kg startsfrom rest and rolls without slipping a distance L = 7.9 mdown a roof that is inclined at angle ? = 29
In the figure, a solid cylinder of radius 16 cm and mass 7.7 kg starts from...
In the figure, a solid cylinder of radius 16 cm and mass 7.7 kg starts from rest and rolls without slipping a distance L = 4.4 m down a roof that is inclined at angle θ = 32°. (a) What is the angular speed of the cylinder about its center as it leaves the roof? (b) The roof's edge is at height H = 5.3 m. How far horizontally from the roof's edge does the cylinder hit the level ground?
A rope of negligible mass is wrapped around a 225-kg solid cylinder of radius 0.400 m....
A rope of negligible mass is wrapped around a 225-kg solid cylinder of radius 0.400 m. The cylinder is suspended several meters off the ground with its axis oriented horizontally, and turns on that axis without friction. (a) If a 75.0-kg man takes hold of the free end of the rope and falls under the force of gravity, what is his acceleration? m/s2 (b) What is the angular acceleration of the cylinder? rad/s2 (c) If the mass of the rope...
A solid cylinder of radius 10 cm and mass 12 kg starts from rest and rolls...
A solid cylinder of radius 10 cm and mass 12 kg starts from rest and rolls without slipping a distance L = 6.0 m down a roof that is inclined at angle  = 30o . a. What is the linear speed and the angular speed of the cylinder about its center as it leaves the roof? b. The roof’s edge is at height H = 5.0 m. How far horizontally from the roof’s edge does the cylinder hit the...
A solid cylinder, mass of 15 kg, is on a hill that is inclined at a...
A solid cylinder, mass of 15 kg, is on a hill that is inclined at a 45 degree angle. If it rolls down the hill without slipping find: 1. The acceleration of the cylinder 2. The force of friction acting on the cylinder 3. The minimum possible coefficient of friction Explain.
A solid sphere of radius R, a solid cylinder of radius R, and a hollow cylinder...
A solid sphere of radius R, a solid cylinder of radius R, and a hollow cylinder of radius R all have the same mass, and all three are rotating with the same angular velocity. The sphere is rotating around an axis through its center, and each cylinder is rotating around its symmetry axis. Which one has the greatest rotational kinetic energy? both cylinders have the same rotational kinetic energy the solid cylinder the solid sphere they all have the same...
A solid homogeneous cylinder and a solid homogeneous sphere each have the same mass and radius....
A solid homogeneous cylinder and a solid homogeneous sphere each have the same mass and radius. They both roll without slipping, have the same linear speed and approach the same inclined plane.  As they roll up the inclined plane, they continue to roll without slipping. Which object will reach the greatest height on the inclined plane? A: solid homogeneous cylinder B: solid homogeneous sphere C: they both reach the same maximum height If you could explain why in your answer...
We can roughly model a gymnastic tumbler as a uniform solid cylinder of mass 65.0 kg...
We can roughly model a gymnastic tumbler as a uniform solid cylinder of mass 65.0 kg and diameter 1.00 m. Part A If this tumbler rolls forward at 0.300 rev/s , how much total kinetic energy does he have? Part B What percent of his total kinetic energy is rotational?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT