In: Physics
A bicycle tire is spinning counterclockwise at 3.10 rad/s. During a time period Δt = 2.40 s, the tire is stopped and spun in the opposite (clockwise) direction, also at 3.10 rad/s. Calculate the change in the tire's angular velocity Δω and the tire's average angular acceleration αav. (Indicate the direction with the signs of your answers.)
(a) the change in the tire's angular velocity Δω (in rad/s)
(b) the tire's average angular acceleration αav (in rad/s2)
Let us consider the counter clockwise direction as positive and the clockwise direction as negative.
Initial angular velocity of the tire = 1 = +3.1 rad/s
Final angular velocity of the tire = 2 = -3.1 rad/s
Time period = t = 2.4 sec
Change in the tire's angular velocity =
= -6.2 rad/s
The negative sign indicates it is directed along the clockwise direction.
Average angular acceleration of the tire = av
av = -2.58 rad/s2
The negative sign indicates it is directed along the clockwise direction.
a) Change in the tire's angular velocity = -6.2 rad/s
b) Average angular acceleration of the tire = -2.58 rad/s2