In: Physics
The balance wheel of a watch oscillates with angular amplitude 1.2π rad and period 0.70 s. Find (a) the maximum angular speed of the wheel, (b) the angular speed of the wheel at displacement 1.2π/2 rad, and (c) the magnitude of the angular acceleration at displacement 1.2π/4 rad.
a )
given
angular amplitude 1.2 π rad and period 0.70 s
displacement of the wheel θ = θ' cos( 2 π t / T )
angular velocity ω = - ( 2 π / T ) θ' [ sin( 2 π t / T ) ]
ωmax = ( 2 π / T ) θ'
= ( 2 π / T ) ( 1.2 π )
= ( 2 π / 0.7 ) ( 1.2 π )
ωmax = 33.80 rad/sec
b )
the angular displacement θ = 1.2 π / 2
θ = θ' cos( 2 π t / T )
θ / θ' = cos( 2 π t / T )
cos( 2 π t / T ) = θ / θ'
= [ 1.2 π / 2 ] / [ 1.2 π ]
cos( 2 π t / T ) = 1 / 2
sin( 2 π t / T ) = [1 - cos2( 2 π t / T ) ]1/2
= [ 1 - ( 1 / 2 )2 ]1/2
sin( 2 π t / T ) = ( √3 ) /
angular velocity ω = - ( 2 π / T ) θ' [ sin( 2 π t / T ) ]
= - ( 2 π / 0.7 ) ( 1.2 π ) [ ( √3) / 2 ]
ω = - 29.275 rad/sec ( for another cycle is ω = 29.275 rad/sec )
c )
angular acceleration is α = dω / dt
= - ( 2 π / T )2 θ' [ cos( 2 π t / T ) ]
given angular displacement θ = (1.2) ( π / 4 )
θ = θ' cos( 2 π t / T )
θ / θ' = cos( 2 π t / T )
cos( 2 π t / T ) = θ /θ'
= [ ( 1.2 )( π / 4)] / [ 1.2 π ]
cos( 2 π t / T ) = 1/4
α = - ( 2 π / T )2 θ' [ cos( 2 π t / T ) ]
= - ( 2π / 0.7 )2 ( 1.2 π ) [ 1 / 4 ]
α = - 75.81 rad/s2 or ( α = 75.81 rad/s2 )