Question

In: Civil Engineering

Rod OA rotates counterclockwise with a constant angular velocity of = 5 rad/s. The double collar...

Rod OA rotates counterclockwise with a constant angular velocity of = 5 rad/s. The double collar B is pin connected together such that one collar slides over the rotating rod and the other slides over the horizontal curved rod, of which the shape is described by the equation r = 1.5(2 - cos θ) ft. If both collars weigh 0.75 lb, determine the normal force which the curved rod exerts on one collar at the instant θ = 120o. Neglect friction.

Solutions

Expert Solution

Ans) In order to calculate force which circular rod exerts on one of the collar and force that OA exerts on the other collar at instant = 120 degree we need to write equilibrium equation in the cylinderical coordinates , where

Fr = m = m ( - r ) ...................................(1)

We have to calculate r , , , , ,

For r = 1.5(2 - Cos )

=> = 1.5 Sin

=> = 1.5 Cos + 1.5 Sin

Substitute the values of = 120 , = 5 rad/s and = 0 in r ,   , equations

=> r = 2.25 ft

=> = 6.495 ft/s

=> = -18.75 ft/s2

Putting values in equation 1,

=> Fr = m ( - r ) = 0.75 (-18.75 - 2.25()) = -56.25 lb

Now,

Fr = - N Cos (120)

=> -56.25 = - N (-0.5)

=> N = -112.5 lb

Hence, normal force exerted by rod on collar is -112.5 lb  


Related Solutions

Knowing that at the instant shown the angular velocity of rod BE is 4 rad/s counterclockwise
Knowing that at the instant shown the angular velocity of rod BE is 4 rad/s counterclockwise, determine (a) the angular velocity of rod AD, (b) the velocity of collar D, (c) the velocity of point A.
A wheel rotates with a constant angular acceleration of 3.0 rad/. If the angular speed of...
A wheel rotates with a constant angular acceleration of 3.0 rad/. If the angular speed of the wheel is 2 rad/s at t = 0, through what angular displacement does the wheel rotate in 2 s? 10 rad. 6 rad. 15 rad. 4 rad. 12 rad. Based on question number 3, through how many revolutions has the wheel turned during this time interval?   4 rev. 3 rev. 1.6 rev. 5 rev. 2 rev. Based on question number 3, what is...
The merry-go-round rotates counterclockwise with a constant angular speed u. The distance between the horse on...
The merry-go-round rotates counterclockwise with a constant angular speed u. The distance between the horse on the merry-go-round and the rotational center is r. (a) Find the position of the horse x and its velocity v, v(t) = d/dt x(t), as vector-functions of time. (b) Find the acceleration of the horse, a(t) = d^2/dt^2 x(t), as a vector-function of time. What is its direction (in comparison with the direction of x)? Now the same horse has a non-constant angular speed...
At t = 0, a flywheel has an angular velocity of 10 rad/s, an angular acceleration...
At t = 0, a flywheel has an angular velocity of 10 rad/s, an angular acceleration of -0.44 rad/s2, and a reference line at ?0 = 0. (a) Through what maximum angle ?max will the reference line turn in the positive direction? What are the (b) first and (c) second times the reference line will be at ? = ?max/4? At what (d) negative time and (e) positive time will the reference line be at ? = -8.0 rad?
At t = 0, a flywheel has an angular velocity of 6.2 rad/s, an angular acceleration...
At t = 0, a flywheel has an angular velocity of 6.2 rad/s, an angular acceleration of -0.18 rad/s2, and a reference line at θ0 = 0. (a) Through what maximum angle θmax will the reference line turn in the positive direction? What are the (b) first and (c) second times the reference line will be at θ = θmax/5? At what (d) negative time and (e) positive time will the reference line be at θ = -7.7 rad?
A wheel has an initial angular velocity of 1 rad/s and undergoes an angular acceleration of...
A wheel has an initial angular velocity of 1 rad/s and undergoes an angular acceleration of 10 rad/s^2. (a) How many radians does it rotate in 4 sec? (b) What is its angular velocity at this time?
A wheel, starting from rest, rotates with a constant angular acceleration of 1.40 rad/s2. During a...
A wheel, starting from rest, rotates with a constant angular acceleration of 1.40 rad/s2. During a certain 6.00 s interval, it turns through 36.6 rad. (a) How long had the wheel been turning before the start of the 6.00 s interval? (b) What was the angular velocity of the wheel at the start of the 6.00 s interval?
A compact disc rotates from rest up to an angular speed of 34.3 rad/s in a...
A compact disc rotates from rest up to an angular speed of 34.3 rad/s in a time of 0.867 s. (a) What is the angular acceleration of the disc, assuming the angular acceleration is uniform? rad/s2 (b) Through what angle does the disc turn while coming up to speed? rad (c) If the radius of the disc is 4.45 cm, find the tangential speed of a microbe riding on the rim of the disc. m/s (d) What is the magnitude...
A horizontal circular platform rotates counterclockwise about its axis at the rate of 0.977 rad/s. You,...
A horizontal circular platform rotates counterclockwise about its axis at the rate of 0.977 rad/s. You, with a mass of 73.3 kg, walk clockwise around the platform along its edge at the speed of 1.09 m/s with respect to the platform. Your 21.1-kg poodle also walks clockwise around the platform, but along a circle at half the platform\'s radius and at half your linear speed with respect to the platform. Your 18.5-kg mutt, on the other hand, sits still on...
Find (a) the angular velocity (rad/s) and (b) the linear velocity (miles/hour) of a person standing...
Find (a) the angular velocity (rad/s) and (b) the linear velocity (miles/hour) of a person standing in Sylmar (latitude 34 degrees north on Earth). Take R of Earth to be 4000 miles. Ans should be about (a) 7.27 X 10-5 rad/s    (b) ~ 900 mi/hr
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT