In: Statistics and Probability
a)
Ho : µ1 - µ2 = 0
b)
Degree of freedom, DF= n1+n2-2 =
9
t-critical value = t α/2 =
2.2622 (excel formula =t.inv(α/2,df)
pooled std dev , Sp= √([(n1 - 1)s1² + (n2 -
1)s2²]/(n1+n2-2)) = 2.2230
std error , SE = Sp*√(1/n1+1/n2) =
1.3461
margin of error, E = t*SE = 2.2622
* 1.3461 =
3.0451
difference of means = x̅1-x̅2 =
7.2200 - 6.683 =
0.5367
confidence interval is
Interval Lower Limit= (x̅1-x̅2) - E =
0.5367 - 3.0451
= -2.5084
Interval Upper Limit= (x̅1-x̅2) + E =
0.5367 + 3.0451 =
3.5818
c)
Ho : µ1 - µ2 = 0
Ha : µ1-µ2 ╪ 0
Level of Significance , α =
0.05
Sample #1 ----> successful
mean of sample 1, x̅1= 7.22
standard deviation of sample 1, s1 =
1.49
size of sample 1, n1= 5
Sample #2 ----> unsuccessful
mean of sample 2, x̅2= 6.68
standard deviation of sample 2, s2 =
2.67
size of sample 2, n2= 6
difference in sample means = x̅1-x̅2 =
7.2200 - 6.7 =
0.54
pooled std dev , Sp= √([(n1 - 1)s1² + (n2 -
1)s2²]/(n1+n2-2)) = 2.2230
std error , SE = Sp*√(1/n1+1/n2) =
1.3461
t-statistic = ((x̅1-x̅2)-µd)/SE = (
0.5367 - 0 ) /
1.35 = 0.399
Degree of freedom, DF= n1+n2-2 =
9
p-value = 0.6994 (excel
function: =T.DIST.2T(t stat,df) )
d)
Conclusion: p-value>α , Do not reject null
hypothesis
Answer match with part b)
e)
Sample #1 | Sample #2 | difference , Di =sample1-sample2 | (Di - Dbar)² |
5 | 6 | -1.00 | 0.55 |
8 | 8.1 | -0.10 | 0.03 |
7.3 | 7.5 | -0.20 | 0.00 |
6.8 | 6.8 | 0.00 | 0.07 |
9 | 9 | 0.00 | 0.07 |
Ho : µd= 0
Ha : µd < 0
Level of Significance , α =
0.05 claim:µd=0
sample size , n = 5
mean of sample 1, x̅1= 7.220
mean of sample 2, x̅2= 7.480
mean of difference , D̅ =ΣDi / n =
-0.260
std dev of difference , Sd = √ [ (Di-Dbar)²/(n-1) =
0.4219
std error , SE = Sd / √n = 0.4219 /
√ 5 = 0.1887
t-statistic = (D̅ - µd)/SE = ( -0.26
- 0 ) / 0.1887
= -1.378
Degree of freedom, DF= n - 1 =
4
p-value = 0.120135
[excel function: =t.dist(t-stat,df) ]
Conclusion: p-value>α , Do not reject null
hypothesis
Thanks in advance!
revert back for doubt
Please upvote